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1 Introduction

OpenParEM2D is a full-wave electromagnetic simulator that solves the for the frequency-dependent
complex propagation constant, characteristic impedance, and vector electric (F) and magnetic (H) fields of
general 2D structures. It is a free and open-source project released under the GPL3 license.

OpenParEM2D solves the full set of Maxwell’s Equations (hence, full-wave) in the frequency domain on
the x-y plane with the assumption that the only z-dependence of the fields are e~7#. The solutions are mode
of transmission lines and waveguides. The fundamental mode and optionally higher-order modes are solved.

OpenParEM2D is a command-line tool that performs just the electromagnetic calculations. To complete
a project, other tools must be used to create a geometry, mesh the geometry, and plot results. The complete
set of tools and operations is called a flow, and any number of flows are possible. The particular flow
assembled for the development of OpenParEM2D is documented here.

This document covers how to use OpenParEM2D. Details on the theory, methodology, and accuracy of
OpenParEM2D are covered in a separate document ”OpenParEM2D _Theory_Methodology_Accuracy.pdf”.

2 Features
OpenParEM2D features are listed in Table 1, while anticipated future upgrades are listed in Table 2.

Table 1: OpenParEM2D List of Features

Full-wave frequency-domain solution of Maxwell’s Equations
Arbitrary 2D geometries

Arbitrary order finite elements

Parallel processing using the Message Passing Interface (MPI)
Adaptive mesh refinement

PEC, PMC, and impedance (perturbational) boundary conditions
Calculations

— complex propagation constant
— characteristic impedance

dielectric loss

— conductor loss
— surface roughness loss
— field distributions

e Dominant and higher-order modes
e Isotropic materials

Table 2: OpenParEM2D List of Anticipated Future Upgrades

Eliminate null-space solutions

Finite element order ramping
Non-perturbational impedance boundary
Anisotropic materials

Omne or more graphical user interfaces (GUI)
Microsoft Windows® port




3 Characteristic Impedance

From Maxwell’s equations, the solution setup of a 2D cross-section of a transmission line or waveguide
is an eigenvalue problem that on solving provides the complex propagation constant and electric field E.
The magnetic field H can be solved as a post-processing operation. Characteristic impedance is not a
fundamental quantity when solving Maxwell’s equations. Instead, it is calculated as a post-processing step
on E and d H using any definition that meets the needs of the engineering design problem. The user must set
up the calculation for the characteristic impedance through the definition of integration paths for voltages
and currents and the selection of the definition of the characteristic impedance to use.

The specific calculation chosen for the characteristic impedance should be the one that is most useful in
an engineering sense. The characteristic impedance is used to design for impedance matching to minimize
reflections and for filter design, where reflections are controlled to produce a specific frequency response. So
the best calculation to use is the one that produces the closest match between simulation and measurement.
The best definition to use for one class of problems is not necessarily the best definition for another class of
problems.

3.1 Definitions

Fundamentally, all solutions to the 2D problem are the modes of the structure, where each mode represents
a unique solution to the eigenvalue problem with a unique field structure and complex propagation constant.
For many users, only one mode is needed, which is referred to as the dominant mode. The electromagnetic
modes are analogous to a string fixed on each end that is plucked, where there is a fundamental vibration
plus harmonics. The fundamental tone is the dominant mode, and the harmonics represent the higher-order
modes.

Each mode has its own unique field structure, so each also has its own unique characteristic impedance
requiring a unique setup. In OpenParEM2D setups, configurations that apply directly to one given mode
are called modal setups. In practice, this means that voltage and/or current integration paths specific to
each mode must be defined.

For multiconductor transmission lines as seen in printed circuit boards and semiconductor packages, the
modal setups are not known except for the special case of differential pairs (i.e. a multiconductor transmission
line with just two symmetric signal conductors plus a ground plane). For multiconductor transmission lines,
OpenParEM2D supports the definition of non-modal integration paths for the voltages and currents then
applies an algorithm to compute the modal voltages and currents from the non-modal integration paths.
These non-modal integration paths are called line setups.

Of the infinite number of possible definitions for the calculation of characteristic impedance, Open-
ParEM2D supports the three primary definitions, and it is at the user’s discretion as to which definition to
use for any given application. The three implemented definitions for the characteristic impedance, Z,, are
the power-voltage (PV) definition given by

1vve
Zo= -2 1
2 Pr (1)
the power-current (PI) definition given by
P,
Zy =222 2
17~ 2)
and finally, the voltage-current (VI) definition as
v
Zo = —,
. Q

where V' and I are the voltage and current, respectively, and P, is the power propagating in the z-direction.
The P, term is always calculated for all modes, so the user does not need to set up anything for it. However,
the voltage and current need further consideration.



3.2 Single-Mode Setups

In practice, most applications only use the dominant mode, for which the setups for the voltage and
current are well known. For single-mode setups, integration paths for the voltage, the current, or both must
be provided. If just the voltage path is provided, then only the PV definition can be calculated. Similarly,
if just the current path is provided, then only the PI definition is available. If both are provided, then both
definitions are calculated, and finally, if neither is provided, then no characteristic impedance is calculated.
In the single-mode case, modal and line integration path setups are identical, use the same calculation, and
produce the same result for the characteristic impedance.

3.3 Multi-Mode Setups

When more than one mode is requested, voltage and current integration paths must be defined by the
user for the dominant and higher-order modes, and the definitions vary per mode. If definitions are not
provided for a mode, then the characteristic impedance for that mode is not calculated.

The voltage and current paths must be provided by the user customized for each mode using modal
setups. For the special case of multiconductor transmission lines, the user has the option of providing line
setups instead of modal setups. With a line setup, non-modal voltages and currents are extracted from the
2D fields and combined to calculate the modal voltages and currents. This relieves the user of the need
to define the modal integration paths, which are only known for differential pairs. Either setup ultimately
calculates the modal voltages and currents and currents leading to modal characteristic impedances.

Consider the case of the differential pair shown in Fig. 1, which is marked with two current paths, _
P1 and P2, and two voltage paths, P3 and _P4. For modal setups, one current path and/or one voltage
path must be defined per mode. For the even mode (common mode), the currents on the conductors are
equal, and the current is calculated over the total path of P14+ _P2. The voltages on the two conductors
are equal, so the voltage is calculated on _P3 or _P4 or as 1/2 of the voltage calculated on the path _P34_
P4. For the odd mode (differential mode), the currents are equal and opposite, and the current is calculated
as the current on _P1 or P2 or as 1/2 the current calculated over the path _P1— P2. The voltage is calculated
as the total voltage the path _P3—_P4. For asymmetric differential pairs or multiconductor transmission lines
with more than 2 conductors, the splits of the currents and voltages on the integration paths are not simple,
so they are challenging to set up.

For line setups, combinations of the paths in Fig. 1 are not attempted. Instead, the voltages and currents
are calculated for the individual paths as drawn. Since these are defined on a per-line basis instead of a per-
mode basis, this setup is called the line setup. By themselves, the line voltages and currents are meaningless,
but once combined, they yield the modal voltages and currents. For the differential pair in Fig. 1, two sets of
voltages and currents are calculated using the line integration paths: one for the even mode and one for the
odd mode. For the even mode, the computed line currents are I7 and IS, and the line voltages are Vi and
V¢. Similarly for the odd mode, the computed line values are I7, Ig, V3, and V?. The even mode current is
then I¢ = If + IS, and the even mode voltage is V¢ = 1/2(V{ + V). For the odd mode, I° = 1/2(I7 — I3)
and VO =V - Vp.

For multiconductor transmission lines with line setups, OpenParEM2D applies a general algorithm to
combine line currents and voltages to obtain modal currents and voltages. In the symmetric case of a
differential pair, the algorithm produces the result just described. OpenParEM2D cannot know whether a
drawing is a multiconductor transmission line, so if a line setup is applied by the user, then the algorithm is

Figure 1: A differential pair marked with voltage and current integration paths.



applied whether or not it is appropriate. In general, modal setups should be used except for multiconductor
transmission lines.

In summary, with a modal setup, the user provides integration paths for voltages and currents customized
per mode to obtain the correct modal voltages and currents. For a multiconductor transmission line, the user
has the option of providing a line setup with voltage and current paths defined per line, then OpenParEM2D
applies an algorithm to combine the line voltages and currents to obtain modal voltages and currents. When
properly set up, the two approached produce the same characteristic impedance for each mode.

4 Files

OpenParEM2D is a command-line tool that takes one and only one input, and that is a text project
control file. To run serially on a single core or processor, the command is

$ OpenParEM2D project_name.proj
and in parallel it is
$ mpirun -q --oversubscribe -np N OpenParEM2D project_name.proj

where project_name.proj is the project control file. See Sec. 6.4 for details on the switch settings -q,
-oversubscribe, and -np. To view a very short help message and the version number, execute

$ OpenParEM2D -h

All inputs are captured in the project control file including names of files that must be included. So setting
up a project involves creating/editing a project control file and ensuring that the additionally required files
are specified and available.

The required include files in a project control file define materials, mesh, and port definitions. Each of
the required files are covered in detail in the following sections.

4.1 Project Control File

All aspects of the execution of OpenParEM2D are controlled by the project control file. There are no
other inputs or command line options. The file consists of a list of keyword/value pairs that are documented
in Appendix A. A simple but working control file is shown below.

#0penParEM2Dproject 1.0

project.save.fields false
mesh.file coax.msh
mesh.order 2
mode.definition.file coax_modes.txt
materials.global.path i
materials.global.name global_materials.txt
refinement.frequency high
refinement.variable |Zol
refinement.iteration.min 3
refinement.iteration.max 50
refinement.required.passes 1
refinement.tolerance le-5
frequency.plan.log 1e7,10e9,1
solution.modes 1
solution.impedance.definition PV
solution.impedance.calculation modal

In this example setup, the mesh file ”coax.msh” is generated using gmsh [1][2], the coax_modes.txt file is gen-
erated using the script ”OpenParEM2D _save.py” in FreeCAD [3], and the materials file ” global_materials.txt”
is a hand-generated library file used across many projects. Keyword/value pairs can be added to the control



file to do things like outputting files to enable plotting with ParaView [4] [project.save.fields true] or calculate
field values at specific (x,y) points [field.point 0,0.0008].

The names of the files generated by OpenParEM2D are based on the name of the project control file
with the extension removed. So a control file called "my_project.proj” results in new files and directories
being created called ”my_project_results.csv”, ”ParaView_my_project”, ”temp_my_project”, etc. The files
are uniquely identified by the project name, so more than one project can exist in a single directory without
file name conflicts.

The text-based control file has several advantages, with a few techniques listed here.

e Project control files tend to be similar across projects, so common practice is to copy a control file

from an old project to a new one and then edit as necessary.

e A project can have multiple control files to explore simulation strategies. A simple comparison of
project control files [e.g. Linux diff or sdiff] shows the differences in setup.

e Directory trees can be easily searched to find projects using or not using certain simulation features
using the helper tool "proj_search”. As completed projects accumulate, this feature becomes more
useful.

e Comments can be used to add notes and keep track of changes or variations. In a GUI, the only option
for the user is to check/uncheck a box or to change a number. With a text-based setup file, the change
can not only be made, but the reason for the change can be given or the history of the setting can be
maintained. This is a surprisingly capable feature that should be liberally used.

The frequencies to solve and the frequencies and order for adaptive mesh refinement are defined in a

frequency plan. OpenParEM2D sets up frequency plans identically to OpenParEM3D, and the definition
and use of frequency plans are covered in ”OpenParEM3D _User_Manual.pdf”.

4.2 Materials Files
Materials use the same materials files as described in ”OpenParEM3D_User_Manual.pdf”.

4.3 Mesh File

The supported mesh file formats are gmsh v.2.2 and the native format of MFEM [5][6]. When setting up
a project, the general procedure is to use a CAD program that can output geometry data readable by gmsh,
then use gmsh to mesh the structure and output a gmsh v2.2 mesh file. The mesh file is then specified in
the project control file using the mesh.file keyword. To get the v.2.2 mesh output from gmsh, the format
must be specified on the command line when starting gmsh as follows

$ gmsh -format msh22 &

One free and open-source CAD program that is supported by gmsh is FreeCAD. FreeCAD outputs a *.brep
file that can be imported by gmsh.

4.4 Mode Definition File

Modes and boundaries are specified in a text file following the specification in Appendix B. The project
control file specifies the mode definition file using the mode.definition.file keyword. Due to complexity,
the mode definition file is very difficult to write by hand, so scripted generation is generally required. When
using FreeCAD, the Python script "OpenParEM2D save.py” can be used to generate the mode definition
file.

5 Example Projects

An automated regression suite is in place as part of the release methodology. The projects in the suite
are listed in Appendix C. The suite also represents a large number of worked examples that are ready to run
with known answers. For example, for the regression project WR90_rectangular_waveguide/WR90/WR90_
order_4 refinement/WR90.proj, the project can be run at the command line by executing



$ process.sh WR90.proj 5

where depending on the computer, a number smaller or larger than 5 could be appropriate for the num-
ber of cores to use. At successful completion, the file "WR90_test_results.log” can be viewed for sum-
mary results and 7straight_test_test_results.csv” for a detailed pass/fail report. Results for the complex
propagation constant, characteristic impedance, voltage, current, and power are available in ”WR90_test_
results.csv”. Computed values for the fields are available in ”WR90_test_fields.csv”. To view the fields, set
project.save.fields true before running the project, then run ParaView to setup and view fields.

The regression suite cases are set up for more accuracy than needed for engineering work to enable tight
pass/fail criteria to be set. In many situations, looser settings are appropriate.

The accuracy demonstrations listed in Sec. D provide additional worked examples. These are set up for
maximum accuracy and accept relatively slow run times.

6 Flow

The process of setting up and running a project from scratch involves several steps: draw the geometry via
CAD or script, create a mesh, define ports and set boundary conditions [if needed], create a local materials
file if the needed materials do not exist in the global library file, and finally run OpenParEM2D. Except for
the OpenParEM2D step, any number of tools and techniques can be used to generate the needed files. One
methodology is described here.

6.1 Geometry Definition Using FreeCAD

FreeCAD is an effective tool for building complex 2D geometries for simulations. It does have a significant
learning curve, but tips are provided to help with that. Start FreeCAD with

$ freecad &

then start a new project with File—New. At first use, set some preferences starting with
View—Workbench—Draft then Edit—Preferences .... Click on the General icon then on the General
tab and set the Unit system: to Standard (mm, kg, s, degree) and Number of digits: to 3. Next
click on the Draft icon and then the General settings tab and set the Internal precision level to
10. Finally, click on the Draft icon and then the Grid and snapping and set the Grid spacing to 1 pym
to enable drawing at pum scale as discussed next on the unit system in FreeCAD.

An important note about the unit system is that FreeCAD has internal scaling that does not seem to
adhere to the length units of mm. Drawing in mm will generally lead to the mesh being output in m. This
seems strange for its use here, but it must work in other scenarios. Or, perhaps a setting has been missed.
Generally, drawings must be made in ym to get mm scaling in the final mesh, or the drawing can be done
in mm then scaled by 0.001 in the x-, y-, and z- directions.

To continue with drawing, FreeCAD should be in the Draft Workbench by selecting
View—Workbench—Draft. The next step is critical to avoid a very messy drawing experience. On the
toolbar, click the Auto button then click Top (XY) to set the drawing plane. The drawing plane is where
2D primitives such as lines and rectangles are drawn.

To build a 2D model, primitives such as lines and rectangles are drawn on the drawing plane. It is
important to use the snap functionality to ensure that objects are aligned. Once drawn, editing of an object
is often easier by editing the text parameters rather that using mouse operations.

In addition to a typical copy operation, FreeCAD also has a clone operation. The clone operation is very
powerful because edits to the parent object cascades to the child cloned objects. Use of clones does take
some planning to ensure that changes to the parent are reflected in the clones in ways that make sense for
the 2D model.

When the 2D model is complete, all of the components must be merged using the "boolean fragments”
operation in the Part Workbench with Part—Split—Boolean fragments. The resulting object can be
exported using File—Export ... to save with the BREP file format, which can be imported by gmsh for
material assignment and meshing.



If the 2D model is built in mm, then the boolean fragment object can be cloned, and the clone can be
scaled in 3 dimensions by 0.001. The scaled clone can then be exported as a BREP file. A scaled clone loses
the connection to the parent object, so a change to the parent requires the scaled clone to be deleted and
re-created with a new clone.

FreeCAD has vastly more capability than that described here, and there are very likely alternative or
better ways to get things done than those described in these tips. Given its expansive capabilities and
Python scripting support, it is highly likely that scripting could greatly simplify the process of building a
2D model for OpenParEM2D.

6.2 Mode and Boundary Annotation Using FreeCAD

The required mode definition file can be built by hand, but that is not generally practical. The FreeCAD
Python script ”OpenParEM2D save.py” can be used to generate the needed mode definition file once the
2D model has been annotated with the needed mode and boundary information. The annotations are added
as physical objects, such as lines, rectangles, and polylines, along with text objects providing instructions to
”OpenParEM2D _save.py”.

6.2.1 Paths (_P)

Paths are physical drawing elements used as voltage and current integration paths. Lines, rectangles, and
polylines can be added to the drawing then marked as paths by editing the Label property in the property
box to

_Ppathname

where pathname can be any text with alphanumeric characters. The paths are referenced by other annotations
only by pathname, so the _P part is dropped.

6.2.2 Integration Paths (.M, and _L)

Integration paths for voltages and currents are set up using previously defined paths plus additional
information indicating voltage or current plus [optionally] scale. An integration path is added to the drawing
by placing a text object with any text, which is ignored. A simple period works well. The integration path
information is entered by editing the Label property of the added text object located in the property box to

_Mmodenumber (voltage|current[,scale]){[+|-]pathnamel,+pathname2,-pathname3, ...}
or
_Lmodenumber (voltage|current[,scale]){[+|-]pathnamel,+pathname2,-pathname3,...},

where modenumber is an integer, scale is a scale factor for the computed results [default=1], and the
pathnames define the path. The pathnames string together, where + and — signs allow reversing direction,
if needed. The two forms (M or _L) are identical except for the prefix, which determines whether modal
or line calculations are used to obtain the voltages and currents. For each modenumber, two entries are
allowed: one for voltage and one for current.

OpenParEM2D solves for the dominant and higher-order modes, and the modes are sorted so that they
are ordered from highest to lowest effective dielectric constant. The voltage and/or current integration
paths defined for modenumber=1 are applied to the mode with the highest effective dielectric constant.
The mode with the next highest effective dielectric constant is used with the integration paths defined with
modenumber=2, and so on. It is required that modenumber start with 1 and increase sequentially.

6.2.3 Boundaries (_B)

Boundaries conditions are defined by placing a text object with any text, which is ignored, with the
Label property in the property box edited to

_Bboundaryname (SI|PEC|PMC[,materiall){[+|-]path,-path,+path,...}



where boundaryname can be any alphanumeric text, the boundary type is selected as one of SI for surface
impedance, PEC for perfect electric conductor, and PMC for perfect magnetic conductor. Selecting SI requires
the conductor material to be specified in the second argument [e.g. copper].

A PEC boundary forces the electric field tangential to the boundary to be exactly zero. This is the default
boundary condition for any edge facing outside to an area that does not have a defined dielectric. The PEC
boundary is useful for enforcing symmetry to reduce the size of the computational space for problems with
anti-symmetric electric fields and symmetric magnetic fields.

A PMC boundary forces the magnetic field tangential to the boundary to be exactly zero. The PMC
boundary is useful for enforcing symmetry to reduce the size of the computational space for problems with
symmetric electric fields and anti-symmetric magnetic fields.

An SI boundary assumes that the conductor is thick compared to the skin depth at the simulation
frequency. No penetration through the boundary is modeled.

6.3 Meshing Using gmsh

For meshing, gmsh is an effective tool that has a relatively straightforward interface. The library used
by OpenParEM2D only supports the version 2.2 mesh format from gmsh, so it must be started calling for
this format as

$ gmsh -format msh22 &

Open the BREP file exported from FreeCAD with File—0Open ... then select a file with the .brep
extension.

Before meshing, materials must be assigned to the surfaces in the imported model. In the cascad-
ing options, select HGeometry—HPhysical groups—HAdd—Surface. A popup menu appears along with
crossing dotted lines on the model indicating the surfaces. Add text to the popup for the material for a
specific surface, then click a crossing line (or more, if all have the same material) for that surface, then enter
e on the keyboard to complete the entry. A popup will appear to create a file with a .geo extension, and
accept that. Continue until all surfaces have materials assigned, then enter q to quit. Note that sometimes
entry by the mouse is disabled, indicated by a red box in the lower left-hand corner, so if the mouse becomes
disabled, click that red box.

With the materials defined, in the cascading options select EHHMesh—2D to generate a mesh. If the mesh
is acceptable, then in the cascading options select Save to save the mesh with an automatic .msh extension.
Gmsh can be closed without needing to save any information because the .geo file is automatically saved.
On re-opening a project, load the .geo to pick up the surface assignments. Meshing can then immediately
proceed.

At the GUI level, meshing behavior can be modified by opening a control panel with Tools—0Options.
An options window will appear, then select Mesh—General. The primary controls are the 2D algorithm and
the element size factor. At this point, it is up to experimentation to see what works best for the geometry
at hand. After a mesh is generated, a change in settings is made by selecting in the cascading options
HGeometry—Reload script to clear the existing mesh, then make any changes to the meshing options and
select EHMesh—2D to generate a new mesh.

Generally, a sparse mesh is desirable for speed, but sparser meshes have lower quality, which impacts the
ultimate speed and accuracy of the electromagnetic solution. The mesh quality can be viewed by selecting
Tools—Statistics—Update. Several metrics are supplied, but the idea is to get these as close to 1 as
possible, but generally, they will be far less than 1.

Once a mesh is complete, select Files—Save Model Options to save the settings to a file with an
automatic .opt extension. The .opt is always applied so that new mesh generation can start where the last
one left off. To start over from scratch, delete the *.opt file before starting gmsh.

Beyond the simple use described here, gmsh has a vast array of features and options plus scripting
capabilities. With the simple tips above, meshing can get started while additional capabilities are explored
over time.
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6.4 Solution With OpenParEM2D

Once the mode definition file from FreeCAD and the mesh file from gmsh have been generated, the
project setup file can be completed with links to these and to a materials file. With all of the files ready, a
project file with the name my_project.proj can be executed by

$ mpirun -q --oversubscribe -np N OpenParEM2D project_name.proj

where N is the number of cores to use for the calculation. The switch -q is optional and eliminates extra
messaging from the MPI system. The switch --oversubscribe is required when N is greater than half the
number of available cores, but otherwise, it is optional. N should generally not exceed the number of available
physical cores, and in most cases, best run times occur when N is less than the number of available cores.
Experimentation is required to find the value of N that results in the lowest run times for a specific computer.

For very small problems, setting N too large can cause OpenParEM2D to hang at the function call within
the MFEM library that sets up the finite element problem. The problem is that there is not enough data
to spread among the number of requested processors. There is not a way for OpenParEM2D to check and
report when N is too large. If OpenParEM2D hangs at the step building finite element spaces ...,
then the remedy is to kill the job and re-start with a smaller N.

It is likely on initial attempts to run a new setup with OpenParEM2D that errors will be reported and
the simulation stopped. The design of OpenParEM2D is to make no assumptions or corrections to input
decks, so every error is reported even if it could be possible for OpenParEM2D to fix or adjust the setup.
Correct the errors and try again.

OpenParEM2D uses a lock file to prevent data collisions from accidentally running the same project file
more than once at a time. The project lock file has the form .project_name.lock. Should a running job
exit unexpectedly, the lock file can be deleted as

$ rm .project_name.lock

so that the job can be restarted. Since the name starts with a period, it is a hidden file, so to see the lock
file in a directory requires

$ 1s -a

The goal is that OpenParEM2D always detects problems and exits gracefully with an error message with
the lock file removed. Any other exit style is an issue that needs to be fixed with improved error checking,
with one exception. For a large project that runs out of memory, OpenParEM2D will exit with cryptic
messages from the MPI system without mentioning the memory issue and without removing the lock file.

When a job is running, progress is shown by extensive data sent to the terminal. This output should be
redirected to a file if the simulation progress is to be logged.

6.5 Viewing Fields

To view the computed electromagnetic fields, OpenParEM2D outputs files for viewing with ParaView
after every iteration and every frequency. To enable this output, set

project.save.fields true

in the project setup file. After loading the result in ParaView, a very useful predefined set of plots can be
generated by running the macro ”field_plot” from the Macros menu item.

Since the files are produced while OpenParEM2D is executing, ParaView can be used to view intermediate
results. The one constraint is that ParaView will report errors if OpenParEM2D updates the files while
ParaView is still reading them. If that happens, just try again.

The default behavior for ParaView is to enable the user to make several changes then click Apply to
review the recomputed output. This is good behavior for very large datasets but inconvenient for small ones.
A preference can be set to automatically implement changes immediately after every update. This setting
can be found at Edit—Settings ...—General—Auto Apply.

After a ParaView file is opened, if the macro "field_plot” is not run, then nothing is shown. To show
a result, scan down to the Coloring section where there is a dropdown box labeled Solid Color. Change
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this setting to one of the field options. For vectors, the displayed field can be further refined by changing
from plotting Magnitude to one of the field components.

Beyond the simple use described here and the tutorials, ParaView has a vast array of filters and cus-
tomizations forming a very powerful visualization capability. With the simple tips above, visualization can
get started while additional techniques are explored over time.

7 Results File

Computed results are saved to a csv file called ”project_name_results.csv”. A commented header line
shows the content of each column. The only outputs from OpenParEM2D are this file, the ParaView
output, and the data printed to the terminal during execution.

8 Tutorials

8.1 Rectangular Waveguide

WRI0 rectangular is constructed, annotated, meshed, and solved. WR90 rectangular waveguide is 22.86
mm wide and 10.16 mm tall and has a recommended frequency range from 6.557 GHz to 13.114 GHz.
8.1.1 Drawing and Mode Annotation

e Create a directory for the project

$ mkdir rectangular_waveguide
$ cd rectangular_waveguide

e Start FreeCAD, open a new drawing, set preferences [if needed], set the drawing workspace to Draft,
and set the drawing plane to Top as outlined in Sec. 6.1.

e Click Drafting—Rectangle or click on the rectangle icon on the toolbar and draw a rectangle of any
size by clicking to start then clicking to end.

e Select the rectangle either on the drawing space or in the Combo View window.

e In the Property window, for property Height change the value to 10.16 um. Sec. 6.1 discusses why
drawings are in pgm to ultimately obtain a mesh in mm. For property Width change the value to 22.86
um.

e Again in the Property window, navigate through the properties Placement—Position then enter 0
for x, y, and z.

e Zoom to view the rectangle with View—Standard Views—Fit All.
e On the toolbar, click the > to show the snap options, and click Snap Midpoint.

e On the toolbar, click the Line object then draw a line from the midpoint of the bottom of the long
edge to the midpoint of the top of the long edge. Be sure that the white dot is showing to indicate
that the line is snapping to the rectangle. This line object is used as the voltage integration path.

e Select the line object in the Combo View window, then click in the Label property and change the text
to _Pv.

e On the toolbar, click the Text object then click anywhere on the drawing plane to add text. In the
pop-up text box, add a period then click Create text. This text object is used to define the voltage
path.

e Select the text object in the Combo View window, then click in the Label property and change the text
to M1(voltage){v}. This is a modal definition for the voltage.
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Save the drawing with the name rectangular waveguide using File—Save.
The completed drawing and annotation is shown in Fig. 2.

Export the mode description file by selecting Macro—Macros ...—0penParEM2D_save.py—Execute.
Enter the name rectangular_waveguide modes.txt, then select Save. Check the Report view win-
dow for errors.

Select the rectangle, then File—Export. .., make sure that the BREP format is selected, then save
the file as rectangular_waveguide.brep.

Save the drawing and exit FreeCAD.

8.1.2 Meshing

Start gmsh as outlined in Sec. 6.3.

Open the BREP file saved from the prior section by selecting
File—0Open ...—rectangular_waveguide.brep—0k.

Assign the material as air by clicking the options tree
HGeometry—HPhysical Groups—HAdd—Surface.

In the pop-op window type air then select one of the crossing lines, which turns red. Press the
keyboard e and a new pop-up appears. Click Create new ‘.geo’ file. Finally, press the keyboard
q to finish. [If the mouse does not select the dotted line, click the red box in the lower left to re-enable
mouse input.]

To mesh the geometry, in the options tree click EHMesh—2D. A screenshot of the mesh is shown in
Fig. 3.

Save the mesh by selecting File—Save Mesh.

Quit gmsh.

8.1.3 Solving

Create the materials file global materials.txt in any text editor and set the text contents to

#0penParEMmaterials 1.0
Material
name=air
Temperature
temperature=any
Frequency
frequency=any
er=1.0006
mur=1
tand=0
Rz=0
EndFrequency
EndTemperature
Source
Constantine A. Balanis, "Advanced Engineering Electromagnetics",
John Wiley and Sons, 1989, p.79.
EndSource
EndMaterial

e Create the project control file rectangular_waveguide.proj in any text editor and set the text con-

tents to
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Figure 2: Drawing and annotation for a WR90 rectangular waveguide.

Figure 3: Screenshot of the meshed WR9I0 rectangular waveguide.
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#0penParEM2Dproject 1.0

project.save.fields true

mesh.file rectangular_waveguide.msh
mesh.order 3

mode.definition.file rectangular_waveguide_modes.txt
materials.global.path i

materials.global.name global _materials.txt
materials.local.path ./

materials.local.name //local_materials.txt
refinement.frequency none

frequency.plan.point 10e9

solution.modes 5

solution.modes.buffer 10

solution.impedance.definition PV
solution.impedance.calculation modal

Note that iterative refinement is not needed for this problem since the mesh is fairly dense, 3"-order
finite elements are used, and the fields vary slowly. See Appendix A for a complete list of available
keyword /value pairs that can be included in the project control file.

e Run OpenParEM2D at the command line with
$ OpenParEM2D rectangular_waveguide.proj
to run serially with a single core or with
$ mpirun -q --oversubscribe -np 4 OpenParEM2D rectangular_waveguide.proj

to run in parallel with 4 cores. Substitute a larger or smaller core number as needed. The option
--oversubscribe is not needed if the number of cores is less than or equal to half the number of
available cores.

8.1.4 Results

The output includes the computed results

mode frequency er,eff alpha,dB/m beta/1000,rad/m beta/ko Zo(real) Zo(imag)
1 le+10 0.5706391  -1.0119426e-10 0.15832151 0.75540658 443.29902  -2.5441599e-11
2 le+10 5.1589308e-27 1543.8729 1.5053553e-14 7.1825698e-14
3 le+10 1.0011881e-27 1974.2013 6.6315799e-15 3.1641556e-14
4 le+10 2.237198e-27 2307.0205 9.9131431e-15 4.7299027e-14
5 le+10 1.3660112e-27 2307.0213 -7.7461569e-15 -3.6959588e-14

showing 1 propagating mode and 4 cutoff higher-order modes. Modes 4 and 5 are degenerate since they
have the same complex propagation constant. An impedance is generated only for mode 1 since a voltage
integration line is only generated for modenumber=1.

From ”rectangular_waveguide_results.csv”, beta/ko for mode 1 is 0.755406579379436 vs. the exact an-
alytical result of 0.755406579840748, so the OpenParEM2D result with this setup is accurate to 9 decimal
places. Alpha in dB/m for mode 2 is 1543.87289318585 vs. the exact analytical result of 1543.8726526439,
so again a very close match. The comparison is similar for the remaining 3 modes. For the characteristic
impedance for mode 1, the OpenParEM2D result is 443.299021764102 2 vs. the exact analytical result of
443.299540513372 €.

Note that the results change slightly from run-to-run. This is due to the use of an iterative solution
combined with MPI processing.

Fields can be viewed with ParaView as follows.

e Start ParaView at the command line with $§ paraview &, then navigate to and open the fields result
rectangular_waveguide_frequency_le+10_mode_1.pvd
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8.2

Run Macros—field_plot. Wait a few moments.

A wide variety of plots are available for viewing, both magnitude and vector.

Scaling in ParaView does not work well for vector plots, so manual adjustment is always required.
Click E real vector then enter 2e-6 for Scale Factor.

The resulting field plot is shown in Fig. 4, where the electric field is vertically directed.

Figure 4: Re(Et) for the WRI0 rectangular waveguide.

Coaxial Waveguide

RG401 type 0.250 semi-rigid coaxial cable is constructed, annotated, meshed, and solved. The RG401
coax is assumed to have an inner conductor diameter of 1.63 mm, an outer conductor inner diameter of
5.46 mm, a PTFE dielectric with ¢, = 2.1 and a tand = 0.0004. The metals are assumed to be copper with
o =5.813 x 107 S/m.

8.2.1 Drawing and Mode Annotation

Create a directory for the project

$ mkdir coaxial_waveguide
$ cd coaxial_waveguide

Start FreeCAD, open a new drawing, set preferences [if needed], set the drawing workspace to Draft,
and set the drawing plane to Top as outlined in Sec. 6.1.

Click Drafting—Polygon or click on the polygon icon on the toolbar and draw a polygon of any size
by clicking to start then clicking to end. This is the first polygon.

Select the polygon either on the drawing space or in the Combo View window.

In the Property window, for property Radius change the value to 0.815 um. Sec. 6.1 discusses why
drawings are in pum to ultimately obtain a mesh in mm. Change the property Faces Number to 36.
This is the center conductor.

Again in the Property window, navigate through the properties Placement—Position then enter 0
for x, y, and z.

Zoom to view the polygon with View—Standard Views—Fit All.
On the toolbar, click the > to show the snap options, and click Snap Center.

Draw a second polygon snapped to the center of the first and configure it with the same settings so that
it is a copy. Alternatively, copy the the first polygon to a second with the Copy and Paste commands
under the Edit menu command. Do not use a cloned object because the Python script OpenParEM2D_
save.py does not support clones.
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Change the Label property of the second polygon to _Pinner. Change the property Make Face to false
[optional, but looks better]. This path is used for both the current integration path and the surface
impedance boundary using copper for the center conductor.

Draw a third polygon snapped to the center of the first with the same settings except with a radius of
2.73 um. This is the dielectric once the center conductor is removed.

Copy and paste the third polygon to a fourth and change its Label property to _Pouter. Set its
property Make Face to false, if desired. This path is used for the surface impedance boundary using
copper for the outer conductor.

Change the drawing workspace to Part. Select the third polygon then the first, then select
Part—Boolean—Cut to cut the center conductor from the dielectric. Agree to the operation in the
warning pop-up window. This object is the coax. Change the Label property to coax.

Change the drawing workspace back to Draft.

Draw a line from the outer conductor of the coaxial cable to the inner conductor. Change its Label to
_Pv. This is the integration path for the voltage.

Add a text object with the Label M1(voltage){v}. This is the modal definition for the voltage.
Add a text object with the Label M1(current){inner}. This is the modal definition for the current.

Add a text object with the Label Bi(SI,copper){inner}. This is the surface impedance definition
for the inner conductor.

Add a text object with the Label Bo(SI,copper){outer}. This is the surface impedance definition
for the outer conductor.

Save the drawing with the name coaxial waveguide using File—Save.

The completed drawing and annotation is shown in Fig. 5, where the _Pinner is highlighted in green
and _Pouter is highlighted in yellow.

Export the mode description file by selecting Macro—Macros ...—0penParEM2D_save.py—Execute.
Enter the name coaxial_waveguide modes.txt, then select Save. Check the Report view window
for errors.

Select the coax object, then File—Export. .., make sure that the BREP format is selected, then save
the file as coaxial_waveguide.brep.

Save the drawing and exit FreeCAD.

8.2.2 Meshing

Start gmsh as outlined in Sec. 6.3.

Open the BREP file saved from the prior section by selecting
File—0Open ...—coaxial_waveguide.brep—0k.

Assign the material as PTFE by clicking the options tree
HGeometry—HPhysical Groups—HAdd—Surface.

In the pop-op window type PTFE then select one of the crossing lines, which turns red. Press the
keyboard e and a new pop-up appears. Click Create new ‘.geo’ file. Finally, press the keyboard
q to finish. [If the mouse does not select the dotted line, click the red box in the lower left to re-enable
mouse input.]

To mesh the geometry, in the options tree click FHMesh—2D. A screenshot of the mesh is shown in
Fig. 6.
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Figure 5: Drawing and annotation for an RG401 coaxial waveguide.

Figure 6: Screenshot of the meshed RG401 coaxial waveguide.
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e Save the mesh by selecting File—Save Mesh.

e Quit gmsh.

8.2.3 Solving
e Create the materials file local materials.txt in any text editor and set the text contents to

#0penParEMmaterials 1.0
Material
name=PTFE
Temperature
temperature=any
Frequency
frequency=any
er=2.1
mur=1
tand=0.0004
Rz=0
EndFrequency
EndTemperature
Source
generic numbers
EndSource
EndMaterial
Material
name=copper
Temperature
temperature=20
Frequency
frequency=any
er=1
mur=1
conductivity=5.813e7
Rz=0
EndFrequency
EndTemperature
Source
David M. Pozar, "Microwave Engineering," Addison-Wesley Publishing Company,
1990, p.714.
EndSource
EndMaterial

o Create the project control file coaxial waveguide.proj in any text editor and set the text contents
to

#0penParEM2Dproject 1.0

project.save.fields true

mesh.file coaxial_waveguide.msh
mesh.order 3
mode.definition.file coaxial_waveguide_modes.txt
materials.global.path ./
materials.global.name //global_materials.txt
materials.local.path ./
materials.local.name local_materials.txt
refinement.frequency none
frequency.plan.point 10e9

solution.modes 1
solution.modes.buffer 0

solution.impedance.definition PV
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solution.impedance.calculation modal
solution.temperature 20
debug.show.impedance.details  true

Note that iterative refinement is not needed for this problem since the mesh is fairly dense, 3"-order
finite elements are used, and the fields vary slowly. See Appendix A for a complete list of available
keyword /value pairs that can be included in the project control file.

e Run OpenParEM2D at the command line with
$ OpenParEM2D coaxial_waveguide.proj
to run serially with a single core or with
$ mpirun -q --oversubscribe -np 4 OpenParEM2D coaxial_waveguide.proj

to run in parallel with 4 cores. Substitute a larger or smaller core number as needed. The option
--oversubscribe is not needed if the number of cores is less than or equal to half the number of
available cores.

8.2.4 Results
The output includes the characteristic impedance computed with all three definitions, shown as

Mode
1 voltage (V): (5.13256,9.54287e-12)

current (I): (0.102229,-2.04457e-05)
Pz (Pz,avg): (0.263587,5.27173e-05)

Mode
1 Impedance (VI): (50.2067,0.0100413)
(PV): (49.9706,0.00999411)
(PI): (50.4439,0.0100888)

The PV definition is very close to the designed value of 50 2. The output also includes the computed results

mode frequency er,eff alpha,dB/m beta/1000,rad/m beta/ko Zo(real) Zo(imag)

1 1e+10 2.1000001 1.0990629 0.3037168 1.4491377 49.97056 0.0099941114

showing the effective dielectric constant as 2.1000001, which is very close to the lossless theoretical value of
2.1 for this homogeneous material.

The loss is 1.099 dB/m. Fairview Microwave on its datasheet for RG401 Type 0.250 part number FM-
SR250CU-STR specifies the loss as 1.083 dB/m. These two loss figures are in very good agreement given
that the exact dimensions nor material properties of the Fairview Microwave product are known. Simply
using generic numbers gets very close.

Note that the results change slightly from run-to-run. This is due to the use of an iterative solution
combined with MPI processing.

Fields can be viewed with ParaView as follows:

e Start ParaView at the command line with $§ paraview &, then navigate to and open the fields result
coaxial _waveguide_frequency_le+10_mode_1.pvd

Run Macros—field_plot. Wait a few moments.

A wide variety of plots are available for viewing, both magnitude and vector.

Disable all plots then enable Ht real magnitude and H real vector.

Click H real vector then enter le-5 for Scale Factor.
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8.3

The resulting field is shown in Fig. 7, where the magnetic field circles the center conductor.

Figure 7: Re(Ht) for the RG401 coaxial waveguide.

Coupled Microstrip with Line Setup

The coupled microstrip pair from Fig. 8 in [7] is set up with line integration paths and solved for the
even and odd characteristic impedances and propagation constants.

8.3.1 Drawing and Mode Annotation

As for the prior tutorials, start a new project called coupled microstrip with a new drawing in
FreeCAD with the drawing plane set to Top.

Draw a rectangle 1 um wide and 0.3 um tall [to ultimately result in 1 and 0.3 mm], and set the
placement to x=-1.5 um and y=0. Zoom to fit. Set Label to cutl.

Select the rectangle and copy it using Edit—Copy then Edit—Paste. Set Label to _Pil. This is the
current integration path for the first microstrip line.

Select object _Pil and copy it. Set the placement to x=0.5 um and y=0. Change Label to cut2.

Select object cut2 and copy it. Set Label to _Pi2. This is the current integration line for the second
microstrip line.

Select object Pi2 and copy it. Set Label to substrate. Set Height to 0.635 um and the width to
10 um. Set the position to x=-5 um and y=-0.635 um.

Select object substrate and copy it. Set Label to air. Set Height to 3 um. Set the position with
y=0.

Set the drawing workspace to Part.
Select air then cutl, then select Part—Boolean—Cut. Click Yes in the pop-up.

Select the cut object then cut2 and repeat the Boolean cut operation. Set Label to air-metal. The
rectangular voids form the microstrip lines since all edges next to void spaces default to PEC.

Select View—Visibility—Hide all objects.

Save the drawing as coupled microstrip.
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Select substrate and air-metal and press the space bar to view the objects.
Set the drawing workspace to Draft.
Set snap options to include Snap Midpoint.

Draw a line from the center at the bottom of substrate to the center at the top of substrate. Set
Label to _Pv1. Set the position to x=-1 um. This is the voltage integration line for the first microstrip
line.

Copy _Pv1, set Label to _Pv2, and set the position x=1 um. This is the voltage integration line for the
second microstrip line.

Add a text object with the Label _L1(voltage){v1}. This is the line definition for the voltage on the
first microstrip.

Add a text object with the Label _L2(voltage){v2}. This is the line definition for the voltage on the
second microstrip.

Add a text object with the Label _L1(current){i1}. This is the line definition for the current on the
first microstrip.

Add a text object with the Label L2(current){i2}. This is the line definition for the current on the
second microstrip.

The drawing should look like that in Fig. 8, showing the substrate and air above the substrate along
with the voltage integration lines.

FreecAD 0211 _c®

Figure 8: Coupled microstrip with annotations.

Set the drawing workspace to Part.

Select substrate, air-metal, _Pvl, and _Pv2, then select Part—Split—Boolean Fragments. By
including the voltage integration lines, gmsh will include these an an edge in the mesh.

Execute the macro OpenParEM2D_save.py to save the mode description file as coupled microstrip_
modes. txt.

Save the drawing and exit FreeCAD.
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8.3.2 Meshing
e Start gmsh and open the saved BREP file.

e Assign physical groups air to the surface representing air and alumina to the surface representing the
substrate using the Add Surface methodology described in the prior tutorials.

e Mesh for 2D then save the mesh.

e Quit gmsh.

8.3.3 Solving
e Create the materials file local materials.txt and set the text contents to

#0penParEMmaterials 1.0
Material
name=air
Temperature
temperature=any
Frequency
frequency=any
er=1.0006
mur=1
tand=0
Rz=0
EndFrequency
EndTemperature
Source
Constantine A. Balanis, "Advanced Engineering Electromagnetics",
John Wiley and Sons, 1989, p.79.
EndSource
EndMaterial
Material
name=alumina
Temperature
temperature=any
Frequency
frequency=any
er=9.8
mur=1
tand=0
Rz=0
EndFrequency
EndTemperature
Source
EndSource
EndMaterial

o Create the project control file coupled-microstrip.proj set the text contents to

#0penParEM2Dproject 1.0

project.save.fields true

mesh.file coupled_microstrip.msh
mesh.order 4

mesh.refinement.fraction 0.01

mode.definition.file coupled_microstrip_modes.txt
materials.global.path ./

materials.global.name //global_materials.txt
materials.local.path ./
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materials.local.name
refinement.frequency
frequency.plan.point
refinement.variable

refinement.iteration.min
refinement.iteration.max
refinement.required.passes

refinement.tolerance
solution.modes
solution.modes.buffer

solution.impedance.definition
solution.impedance.calculation
debug.show.impedance.details

e Run OpenParEM2D with the proj file.

8.3.4 Results

local_materials.txt
high

40.11e9

|Zol

1
40
1

0.0001

2

0

PI
line
true

OpenParEM2D calculates the characteristic impedances for common and differential modes, while [7]
quotes results for the even and odd modes. To compare, the OpenParEM2D results are converted so that
the even mode characteristic impedance is calculated as twice the common mode impedance, while the odd
mode impedance is half the differential impedance. The results are shown in Table 3, where the [7] results
are scaled off the printed plot. The results are in excellent agreement with a small difference in the odd

mode characteristic impedance.

Table 3: Comparison of Results

Characteristic

Be/ko
ﬁo/ko
Zoe, 2
Zoo, §2

Simulation of [7] | OpenParEM2D
2.93 2.94
2.82 2.82
50.8 50.6
43.4 42.6

Due to the sharp corners on the microstrip lines, adaptive mesh refinement is used in this solution. The
initial and final refined meshes are shown in Fig. 9, where the refinement concentrates on the corners and

the dielectric interface.

(a) Initial mesh as produced by gmsh. (b) Refined mesh after 26 iterations.

Figure 9: Initial and refined meshes for the coupled microstrip lines.

The fields can be viewed with ParaView, where pre-configured plots are generated using the macro field_
plot. Plots for the common and differential modes are shown in Fig. 10. In these plots, the background
shows Re(|E|), while the black vectors show Re(E) and the white vectors show Re(H). Note that Re(E)
and Re(H) do not use the same scale.
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8.4

(a) Common mode.

(b) Differential mode.

Figure 10: Plots of the common-mode and differential-mode fields.

Coupled Microstrip with Modal Setup

The tutorial from Sec. 8.3 is re-worked using modal setups for the voltage and current integration paths.
The setups are nearly identical, so just the changes are discussed.

8.4.1 Drawing and Mode Annotation

Copy the tutorial project directory from coupled microstrip to coupled microstrip_modal.

In FreeCAD, change _L1(voltage){v1l} to Mi(voltage,0.5){v1l,v2}. Mode 1 is the common-mode
mode, so the voltages on the lines are equal due to symmetry. The modified annotation has Open-
ParEM2D integrate along both paths, so the voltages is 2x too high, so a scaling factor of 0.5 is
applied.

Change _L2(voltage){v2} to M2(voltage){vl,-v2}. Mode 2 is the differential mode, so the voltages
are equal and opposite. The modified annotation has OpenParEM2D integrate along the v1 path and
then the v2 path in the reversed direction. The total voltage is then found without need for a scaling
factor.

Change _L1(current){il} to Mi(current){il,i2}. For the common mode, the total current is the
sum of the currents on the two lines.

Change _L2(current){i2} to M2(current,0.5){il,-i2}. For the differential mode, the currents are
equal and opposite. The modified annotation has OpenParEM2D calculate the total currents on both
lines then applies a scaling factor of 0.5.

Execute the macro OpenParEM2D_save.py to save the mode description file as coupled microstrip_
modes.txt.
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e Save the drawing and exit FreeCAD.

8.4.2 Meshing

The existing mesh is re-used.

8.4.3 Solving

In the proj file, change the value for the keyword solution.impedance.calculation from line to
modal. Run OpenParEM2D.

8.4.4 Results

After 26 iterations, the results shown to the terminal are

mode frequency er,eff alpha,dB/m beta/1000,rad/m beta/ko Zo(real) Zo(imag)
1 4.011e+10 8.6544292 2.1815834e-11 2.4730394 2.9418411 25.279915 2.7033135e-14
2 4.011e+10 7.9720613 1.3477717e-11 2.3735432 2.8234839 85.178997 3.0707696e-14

A run from the line setup [also after 26 iterations| in Sec. 8.3 shows nearly identical results as

mode frequency er,eff alpha,dB/m beta/1000,rad/m beta/ko Zo(real) Zo (imag)
1 4.011e+10 8.6544292 -4.079956e-11 2.4730394 2.9418411 25.279915 -4.2724076e-14
2 4.011e+10 7.9720613 7.4035296e-12 2.3735432 2.8234839 85.127309 4.7404632e-14

where the only differences are the very minor changes due to the iterative nature of the solution interacting
with MPI processing.

Impedance calculations are a post-processing step, so the field solution is the same for both setups. The
differences are simply that the line setup calculates voltages and currents on partial paths then combines
them to get final values, while the modal setup calculates voltages and currents on total paths to get final
values without further processing. The two techniques must necessarily get the same results.

9 Techniques
9.1 Finite Element Order

The finite element order is set with the keyword/value pair mesh.order N in the project control file. N
can be any integer and sets the order of the polynomial approximating the field in each finite element. All
elements in a mesh have the same element order.

Higher values for N have potential advantages due to the polynomial accommodating larger field variations
within any given element. The advantages of higher order include:

e Greater accuracy for a given mesh size.
e Smaller mesh size for a given accuracy.
e Better accuracy for frequency sweeps.
e Smoother fields for visualization.
However, there are also disadvantages of higher order:
e Slower run times for a given mesh size.
e Larger memory consumption.

e Slower mesh error calculation for a given mesh size.
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e Harder convergence for the initial solution, although order-ramping may offer a fix, when implemented.

The disadvantages ramp quickly with increasing N. OpenParEM2D does not currently support GPU com-
puting, which can alleviate the disadvantages of higher N.
Experience to date suggests the following guidelines for selecting N:

e Assuming a simulation runs to completion in an acceptable time, higher N is always better than lower
N.

e Avoid N=1. Adaptive refinement is required and the number of iterations is just too great. Improved
adaptive meshing algorithms might address this issue.

e Generally, N=3 and N=4 are good options.

e Choose the largest N that allows a quick first iteration when using adaptive refinement. What qualifies
as quick depends on mesh size.

e In the first iteration, if it take more than a few seconds or requires a very large iteration limit [like
100,000], then decrease N. Conversely, if the first iteration is very quick, then try increasing N. Note
that very slow convergence can be caused by poor mesh quality, so it is important to ensure that the
mesh has good triangulation by avoiding long thin triangles.

e Problems with relatively smooth fields, such as those using waveguide, greatly benefit from larger N.
For some problems, adaptive refinement may not be needed.

e Problems with sharp edges, such as edge-coupled stripline, benefit from a highly refined mesh around
the edges. To keep run times reasonable, it can be beneficial to use N=2.

o If using iterative refinement, and the number of iterations is very large, then an increase in N could be
in order. Conversely, if only a couple of iterations are needed, then a smaller N could be useful to force
an increase in the number of iterations to help uncover potential areas where additional refinement
would improve accuracy.

e ParaView supports N up to 6. If ParaView will be used to review field plots, then keep N to 6 or fewer.

9.2 Over-Meshing

All computations involve finite precision, and it is possible to demand more precision from a computer
than it can provide, in which case accuracy can degrade. For finite element programs such as OpenParEM2D,
excess precision requirements occur when a problem has far more mesh density than that required to accu-
rately solve a problem. This is called over-meshing.

Consider an example of a problem minimally meshed such that the geometry is barely but accurately
captured by the mesh and that first-order finite elements are used to solve the problem with adaptive mesh
refinement. At the first iteration, the computed result will have poor accuracy because the linear finite
elements cannot capture the curvature of the fields. Adaptive refinement subdivides the mesh in areas of
high error, meaning areas where the linear approximation is poor, thereby improving the ability of the
linear elements to describe the field. This process continues with additional refinements until the linear
approximation provides a reasonable fit to the field curvature in all areas.

Now, what happens if adaptive refinement continues after the approximation of the linear finite elements
already provides a good fit to the field curvature? Certainly, the fit of the field gets better. However, a
problem begins to develop where the improvement starts to push down to lower decimal places. So with
hypothetical numbers, the first iteration provides a 10% improvement, the second 1%, third 0.1%, fourth
0.01%, etc. Eventually, the required precision runs out of decimals for accurate calculation, and the computed
solution starts losing accuracy. More iterations just makes it worse.

The same effect can happen by choosing mesh orders that provide too much variability required by the
problem. For example, a perfectly linear field structure would be accurately described by both a linear finite
element and a second-order finite element. However, for the second-order element, the computation must
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accurately zero out the quadratic term, which requires extra digits of precision. Once a field is accurately
captured by a finite element order, going substantially higher in order can actually decrease accuracy.

The key is to avoid relying on excessive numerical precision by not over-meshing a problem. The concept
is the same whether low- or high- order finite elements are used. Generally, the higher the order of the finite
elements, the less dense the mesh needs to be to avoid over-meshing.

Best practice is to simply mesh the problem with minimal settings and then let adaptive mesh refinement
or stepping up the finite element order converge the solution to engineering accuracy then stopping. This
practice also results in minimal run time. The goal is really to just not "play it safe” by targeting excessively
high accuracies. See also the comments in the ”Lossy Stripline” accuracy demonstration in the companion
document ”OpenParEM2D_Theory_Methodology_Accuracy.pdf”.

9.3 Very Coarse Meshes

Very coarse meshes can cause convergence issues with higher-order modes. An example would be just
4 triangles to mesh a rectangular waveguide. A simple remedy should this occur is to set mesh.uniform_
refinement.count to 1 or perhaps 2 to increase the mesh density. Otherwise, a new mesh with higher
density is needed.

9.4 Mesh Quality

The largest aspect ratio of any element in the mesh is reported as a measure of mesh quality, with the
output looking something like

mesh worst element aspect ratio: 2.2595 < target: 5

The target is just a reminder of a level that indicates a very good mesh. As the aspect ratio climbs above
the target, convergence of the eigenvalue solution degrades and the resulting fields are not as good. Aspect
ratios of 10 are still good, but by 20, the solution will often start showing signs of stress. Higher order finite
elements have more trouble with high aspect ratios than lower order finite elements.

9.5 Adaptive Mesh Refinement

OpenParEM2D supports adaptive mesh refinement, where mesh elements with high errors are subdivided
before re-solving the problem. Iterations stop when the convergence criteria are met.

The fraction of the mesh that is refined on any iteration is given by mesh.refinement.fraction. Mesh
errors are calculated for each mesh element, sorted, and then the top mesh.refinement.fraction are
selected for refinement. If high errors are concentrated in a few elements, such as for microstrip and stripline,
then a lower mesh.refinement.fraction prevents low-error elements from being refined. A suggested value
for mesh.refinement.fraction in this situation is 0.01. Conversely, if all of the elements have similar
errors, such as for rectangular waveguide and coax, then a higher mesh.refinement.fraction can speed
up convergence. A suggested value for mesh.refinement.fraction in this situation is the default value of
0.025.

The MFEM library does not support de-refinement for conformal meshes, and the flow presented here
uses gmsh, which only supports conformal meshes. Once an element is refined, it stays refined even if later
refinements improve the field such that it no longer needs to be refined. Since refinement is one-way, it
is worthwhile to refine relatively slowly to minimize the number of relatively low-error elements that get
refined. Ultimately, less refinement at each iteration produces more iterations but at times a faster overall
run time.

Note that very low values of mesh.refinement.fraction should be matched with a reduced value of
solution.tolerance to avoid pre-mature convergence. For example, if just one mesh element in a large
mesh is refined, then clearly the answer cannot change very much and a smaller solution.tolerance would
be in order.
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9.6 Conductor Loss

Conductor losses are added with boundaries defined with ”SI” along with a conductor material. The
problem is first solved with all metals being ideal (PEC), and this solution includes dielectric losses. Then
conductor losses are computed as a post-processing step and added to the dielectric loss to get the total
loss. With this style of perturbational conductor loss calculation, field penetration through conductors is
not supported. All metals must be thick compared to the skin depth for the conductor loss calculation to
be accurate, and it is up to the user to ensure that this condition is met.

Conductor losses have a very small effect on the propagation constant. Since the eigenvalue problem
solves for the propagation constant with PEC and PMC boundaries, the propagation constant does not
include any effects due to conductor losses. OpenParEM3D does include the effect of conductor losses on
delay, so if this effect needs to simulated, then a straight section of transmission line or waveguide can be
solved for the delay with OpenParEM3D from which the propagation constant can be calculated.

9.7 Convergence Difficulties of the Eigenvalue Solution

Difficulty achieving convergence generally occurs in two scenarios: poor mesh quality and/or large fre-
quency step. In cases where convergence is very slow, the best strategy is to re-mesh the problem to improve
the mesh quality. The next best strategy is to reduce the order of the finite elements. In some cases, relaxing
solution.tolerance can be sufficient, although tolerances as low as 1e-08 can start to impact accuracy.

Since the complex propagation constant from the prior iteration is used as the initial guess for the next
iteration, large jumps in frequency can cause convergence issues since the larger the step, the less relevant
is the initial guess. The remedy in this situation is to increase the frequency density.

A special case of a large frequency step is when adaptive mesh refinement occurs at a high frequency
followed by a frequency sweep starting at a very low frequency. If convergence at the low frequency is proving
difficult, then adaptive refinement can be added at lower frequencies to step down the frequency so that the
initial guess is better. For example, suppose a problem is adaptively refined at 50 GHz with a subsequent
sweep starting at 0.1 GHz. The complex propagation constant at 50 GHz is used as the initial guess at
0.1 GHz, for a 500:1 step down in frequency. To reduce the size of the step, adaptive mesh refinement at
50 GHz can be followed by adaptive mesh refinement at 5 GHz and then additionally at 0.5 GHz so that
the maximum step down in frequency for the initial guess is never more than 10. [In a case like this, to
avoid excessive refinement and very long run times, the convergence tolerance can be relaxed since multiple
rounds of adaptive refinement is applied and good accuracy will still be obtained.]

9.8 Missing Higher-Order Modes

Along with the desired results, OpenParEM2D also finds the null space result, which is essentially the
trivial field result of 0. The null space results are filtered out, and just the usable results are shown. To
find N good results, OpenParEM2D has to solve for N + M modes, where M can be 0 to 10 or higher.
The count of extra modes to solve is given by solutions.mode.buffer, and a typical value is either 0
or 5, but it can be higher. If OpenParEM2D does not find as many modes as requested, simply increase
solutions.mode.buffer and re-run. Since the eigenvalue solver must solve for N + M modes, and more
modes takes more time to solve, it is beneficial to run times to keep M as low as possible.

9.9 MPI and Iterative Solvers

MPI works by dividing a matrix by rows and spreading them across multiple cores. Exactly how the
split is done depends on the current loading of the computer, so there is variability from run-to-run. The
cores communicate with each other with packets of information and the timing of these also depend on
loading, and the order of execution can change from run-to-run. OpenParEM2D uses iterative solvers for
the eigenvalue solution of E and the linear solution for H, and the progression of the iterations changes
slightly because the data used at each iteration changes due to the variation in the data split and timing
of MPI data packets. The net result is that the answers produced by OpenParEM2D changes slightly from
run-to-run. If a single core is used, then there is no subdividing of the matrix nor MPI communication, so
identical results are produced from every run.
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A low-accuracy simulation demonstrates higher variation from run-to-run than a high-accuracy simula-
tion. This behavior can be used to build confidence that a solution is converged by re-running the simulation
with a different number of cores and seeing how much the answer changes. Changing the number of cores
forces a change in the split of the matrices across cores and has more effect on the computed results. If the
number of cores is not changed, it is possible that the split is identical with similar timings so that the final
result does not actually change much.

9.10 Companion Tool builder

A companion tool called builder helps to quickly build projects for some common transmission line and
waveguide types. The target use for builder is optimization of dimensions and materials to reach a target
characteristic impedance. A simple text file with keyword/value pairs describes the physical aspects of the
problem to be solved, then builder constructs all of the needed files for OpenParEM2D with the exception
of the mesh, which still must be generated in gmsh. However, in gmsh the materials are already defined,
so the process can be as simple as opening the geo file, meshing, then exiting. The template proj file can
be touched up with the remaining specifics for a given simulation. Builder is documented in ”builder_User_
Manual.pdf”.
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A Control File Specification

OpenParEM2D is controlled by a text file consisting of keyword/value pairs. The rules for setting up the

control file are listed below.

e The first line of the file must be #0penParEM2Dproject 1.0
One keyword /value pair per line

[ ]
e Except for file names, each keyword has a default value
[ ]

Keyword /value pairs can appear in the file more than once, and excepting frequency.plan.*, the last
entry is the one that is used. Note: No error message or warning is issued when keyword values are

overwritten.

e All units are MKS: meter, Ohms, Hz, S/m, Celsius

Keyword Value Default Description
project.save.fields bool false Save the vector field results for viewing with ParaView
mesh.file string File name of the mesh file
mesh.order int 1 Order of the finite elements
mesh.uniform_refinement.count int 0 Number of times the mesh is uniformly refined before
starting the simulation
mesh.refinement.fraction double 0.025 Maximum fraction of the mesh to refine at each iteration
mesh.enable.refine bool true Prevents re-ordering of DOFs when loading meshes.
Used by OpenParEM3D, and otherwise, no effect.
mode.definition.file string File name for the boundary condition/mode file
materials.global.path string ./ Path to a global materials file serving as a library. Can
also be blank or ./ for the local directory
materials.global.name string global_materials File name for the global materials file
materials.local.path string ./ Path to a local materials file. Can also be blank.
materials.local.name string local_materials File name for the local materials file
materials.check.limits bool true Check the material values against range limits
refinement.frequency string highlow Sets the frequency or frequencies on which adaptive mesh
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refinement is applied.
Options:
e none - refine at no frequencies and simulate with
the initial mesh
e all - refine at each frequency starting from the ini-
tial mesh
e high - refine at the highest frequency then simulate
at all frequencies with that mesh
e low - refine at the lowest frequency then simulate
at all frequencies with that mesh
e highlow - refine at the highest then lowest frequen-
cies then simulate at all frequencies with that mesh
e lowhigh - refine at the lowest then highest frequen-
cies then simulate at all frequencies with that mesh
e plan - refine at the frequencies marked in the fre-
quency plan then simulate at all frequencies with
that mesh




Keyword Value Default Description
refinement.variable string —gamma— Variable on which to test convergence during adaptive
refinement Options:
e alpha - converge on the real part of the complex
propagation constant (loss)
e beta - converge on the imaginary part of the com-
plex propagation constant (propagation constant)
e —gamma— - converge on the magnitude of the
complex propagation constant
e —Z70— - converge on the magnitude of the charac-
teristic impedance
e Re(Zo) - converge on the real part of the charac-
teristic impedance
e Im(Zo) - converge on the imaginary part of the
characteristic impedance
refinement.iteration.min int 1 Minimum number of iterations to perform
refinement.iteration.max int 10 Maximum number of iterations to perform
refinement.required.passes int 3 The number of consecutive iterations that must meet the
refinement tolerance
refinement.tolerance double 0.001 Relative tolerance for convergence during adaptive refine-
ment
refinement.refine.converged.modes bool true Continue refining on modes even after initial convergence.
Setting to false has not been thoroughly evaluated
frequency.plan.log string none Adds solution frequencies to the frequency plan
using a log scale with the comma-separated list
start,stop,pointsPerDecade
frequency.plan.log.refine string none Same as frequency.plan.log plus mesh refinement is ap-
plied at these frequencies
frequency.plan.linear string none Adds solution frequencies to the frequency plan using a
linear scale with the comma-separated list start,stop,step
frequency.plan.linear.refine string none Same as frequency.plan.linear plus mesh refinement is ap-
plied at these frequencies
frequency.plan.point double none Adds the given solution frequency to the frequency plan
frequency.plan.point.refine double none Same as frequency.plan.point plus mesh refinement is ap-
plied at the given frequency
solution.modes int 1 Number of modes to solve
solution.temperature double 25 Temperature used for materials selection
solution.tolerance double le-13 Tolerance for the eigenvalue solution and H field calcula-
tion
solution.iteration.limit int 5000 Iteration limit for the iterative eigenvalue and Hfield
solvers
solution.modes.buffer int 5 Additional number of modes over solution.modes to
solve. Increase this value if not all of the solution.modes
solutions are found
solution.impedance.definition string none Definition used to calculate the characteristic impedance
Options:
e none - skip the calculation
e PV - use the power-voltage definition
e PI - use the power-current definition
e VI - use the voltage-current definition
solution.impedance.calculation string modal Setup used for defining the voltage and current integra-
tion paths
solution.check.closed.loop bool true Enables checking if current integration paths form closed
loops
solution.accurate.residual bool false Sets an input parameter to the eigenvalue solver that
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may produce higher accuracy results. In many cases, the
eigenvalue solver will hang with this is set to true




Keyword Value Default Description

solution.shift.invert bool true Sets the eigenvalue solver to use the shift-and-invert
method

solution.use.initial.guess bool true Use the current eigenvalue solution as the initial guess in
the following iteration

solution.shift.factor double 1.0 Multiplier for the initial guess eigenvalue

solution.initial.alpha double 0 Initial guess for alpha, where the complex propagation
constant is alpha+jbeta

solution.initial.beta double 0 Initial guess for beta, where the complex propagation
constant is alpha+jbeta

output.show.refining. mesh bool false Show details about the mesh during adaptive refinement

output.show.postprocessing bool false Show details about the post-processing steps after the
eigenvalue solution is found

output.show.iterations bool false Show the eigenvalue solve iterations

output.show.license bool false Show the license governing use of the software

test.create.cases bool false Create test cases useful for setting up regression testing

test.show.audit bool false Show summary results when performing regression test-
ing with the program called “process”. This keyword is
not used by OpenParEM2D

test.show.detailed.cases bool false Show detailed information about the test cases when re-
gression testing with the program called “process”. This
keyword is not used by OpenParEM2D

debug.show.memory bool false Show memory usage at strategic times to look for mem-
ory leaks. Not very comprehensive

debug.show.project bool false Show the full set of project keywords and their values

debug.show.frequency.plan bool false Show the full set of simulation and refinement frequencies

debug.show.materials bool false Show the full set of materials from the material databases

debug.show.mode.definitions bool false Show the setups used for mode definitions

debug.show.impedance.details bool false Show all voltages, currents, powers, and impedance cal-
culations

debug.skip.solve bool false Apply all setup actions but skip solving

debug.tempfiles.keep bool false Keep temporary files

field.point double,double none Print out the field values at the x,y point in the cross

section. Any number of field points can be specified.
Primarily used for regression testing
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B Boundary/Mode File Specification

Modes and boundaries are specified in a text file with information on locations and type. The file is generally
referred to as the "mode definition file” even though it contains both mode and boundary specifications. Paths are
first defined to provide physical locations, then modes and boundaries use the paths to complete the setups. Paths
can be re-used across modes and boundaries.

// a comment
#0penParEMmodes 1.0 // required on first real line
// All coordinates are in m.

// This block is informational use only.
// Only one File/EndFile block can be specified.
File
name=string // name of the file from which the lines are generated
EndFile

// Paths are used to define voltage integration lines, current integration loops,
// and locations for boundary conditions.

// Any number of paths can be defined.

// Paths are not required to be used.

// Names must be unique within all path definitions.

Path
name=string
point=(double,double) // (x,y)
point=(double,double) // any number of points

point=(double,double)
closed=bool // false if the path is open and true if the path is closed
EndPath

// For closed loops, do not duplicate the starting and stopping points. Using closed=true
// closes the loop during calculations.

// Specify any number of boundaries.

// The physical placement of the boundary is defined by the paths.

// One path can be used if it is complete, and paths can be chained together to form more

// complex physical setups.

// Names must be unique within all boundary definitions.

Boundary
name=string
type=surface\_impedance|perfect\_electric\_conductor|perfect\_magnetic\_conductor

material=string // required for surface impedance

path=namel // no sign means that the direction of the path is unchanged

path-=name2 // minus sign means that the direction of the path is reversed

path+=name3 // plus sign means that the direction of the path is unchanged
EndBoundary

// Specify any number of modes.

// Use with solution.impedance.calculation set to "modal".

// One Mode/EndMode block is applied to one solved waveguide/transmission line mode. N
// modes requires N blocks. For N modes, all mode numbers are required from 1 to N, so
// mode definitions are required for modes 1, 2, ..., N. One path can be used if it is
// complete, and paths can be chained together to form more complex physical setups.

// One voltage definition and/or one current definition can be provided per mode number.
// 0 is not an allowed mode number
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Mode

mode=integer
type=voltage|current
[scale=double] // default=1
path=+name

path-=name

path=name

EndMode

//
//
/7
//
/!
/7
//
/7

Specify any number of lines.

Use with solution.impedance.calculate set to \line".

One Line/EndLine block is applied to each conductor. N conductors requires N blocks.
For N lines, all line numbers are required from 1 to N, so line definitions are required
for lines 1, 2, ..., N. One path can be used if it is complete, and paths can be chained
together to form more complex physical setups. One voltage definition and/or one current
definition can be provided per line number.

0 is not an allowed line number

Line

line=integer
type=voltage|current
[scale=double] // default=1
path=+name

path-=name

path=name

EndLine

//
/7

The Mode/EndMode and Line/EndLine blocks are interchangeable. Two block types are
supported so that the block naming is coordinated with the impedance calculation type.
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C Regression Suite

The projects are located in the installation area in the ”regression/OpenParEM2D” directory.

Project

Description

coax_modal/coax.proj

coax_line/coax.proj
coaxEighth/coax.proj

coaxEighthAlt/coax.proj
differential_pair/diff_pair_modal/diffPair.proj
differential_pair /diff_pair_line/diffPair.proj

differential_pair/diff_pair_modal_symmetry_
even/diffPair.proj
differential_pair/diff_pair_modal_symmetry_
odd/diffPair.proj
differential_pair/diff_pair_line_wide_
spacing/diffPair.proj
WRI0_rectangular_waveguide/ WR90_PMC_
symmetry /WR90half.proj
WROI0_rectangular_waveguide/ WR90/WR90_
order_1_refinement_no_mesh_reuse/ WR90.proj
WRI0_rectangular_waveguide/ WR90/WR90_
order_2_refinement_mesh_reuse/ WR90.proj
WROI0_rectangular_waveguide/ WR90/WR90_

order_3_no_refinement_no_mesh_reuse/ WR90.proj

WRI0_rectangular_waveguide/ WR90/WR90_
order_3_refinement_no_mesh_reuse/ WR90.proj
WRI0_rectangular_waveguide/ WR90/WR90_
order_3_mixed_refinement/WR90.proj
WRI0_rectangular_waveguide/ WR90/WR90_
order_4_refinement /WR90.proj
WRI0_rectangular_waveguide/ WR90/WR90_
order_4_refinement_no_mesh_reuse_
loss/WR90.proj
WRI0_rectangular_waveguide/ WR90/WR90-
order_5_refinement_mesh_reuse/ WR90.proj
WRI0_rectangular_waveguide/ WR90/WR90_
order_6_norefinement/WR90.proj

Coax with comparison to analytical results using modal defini-
tions

Coax with comparison to analytical results using line definitions
1/8 coax to test PMC boundary with comparison to analytical
results

1/8 coax with re-located integration line with comparison to
analytical results

Differential pair with comparison to literature simulation using
modal definitions

Differential pair with comparison to literature simulation using
line definitions

1/2 differential pair using symmetry with comparison to litera-
ture simulation using modal definitions

1/2 differential pair using symmetry with comparison to litera-
ture simulation using modal definitions

Widely spaced differential pair using line definitions to test for
accommodation of sign flips

1/2 waveguide testing PMC boundary with comparison to ana-
lytical results

Waveguide with higher-order modes with comparison to analyt-
ical results for 15°-order finite elements

Waveguide with higher-order modes with comparison to analyt-
ical results for 2°%-order finite elements

Waveguide with higher-order modes with comparison to analyt-
ical results for 3"d-order finite elements

Waveguide with higher-order modes with comparison to analyt-
ical results for 3"¥-order finite elements

Waveguide with higher-order modes with comparison to analyt-
ical results for 3"%-order finite elements

Waveguide with higher-order modes with comparison to analyt-
ical results for 4'"-order finite elements

Waveguide with higher-order modes with comparison to analyt-
ical results for 4*"-order finite elements

Waveguide with higher-order modes with comparison to analyt-
ical results for 5*"-order finite elements
Waveguide with higher-order modes with comparison to analyt-
ical results for 6""-order finite elements
Waveguide with higher-order modes with comparison to analyt-

permeability /rectangular_waveguide/ WR90.proj
ical results for p, =2

Partially filled rectangular waveguide with comparison to semi-
analytical results for 3"%-order finite elements

Partially filled rectangular waveguide with comparison to semi-
analytical results for 3"¥-order finite elements

Partially filled rectangular waveguide with comparison to semi-
analytical results for 4'"-order finite elements

Partially filled rectangular waveguide with comparison to semi-
analytical results for 4*"-order finite elements

Partially filled rectangular waveguide with comparison to semi-
analytical results for 5'"-order finite elements

Partially filled rectangular waveguide with comparison to semi-
analytical results for 6'"-order finite elements

Partially filled rectangular waveguide with comparison to semi-
analytical results for p, = 2

partially_filled_rect_waveguide/PartFilled_order-
3_norefinement /PartFilled.proj
partially_filled_rect_waveguide/PartFilled_order_
3_refinement/PartFilled.proj

partially_filled rect_waveguide/PartFilled order_
4 norefinement /PartFilled.proj
partially_filled_rect_waveguide/PartFilled_order-
4_norefinement_widebandwidth/PartFilled.proj
partially_filled_rect_waveguide/PartFilled order_
5_norefinement /PartFilled.proj
partially_filled rect_waveguide/PartFilled order_
6_norefinement /PartFilled.proj

permeability /partially_filled _rect_
waveguide/PartFilled.proj
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Project

Description

Lee_microstrip/full_line/Lee_microstrip.proj

Lee_microstrip/full_line_omit_voltage /Lee_
microstrip.proj
Lee_microstrip/full_line_omit_current/Lee_
microstrip.proj
Lee_microstrip/full_modal/Lee_microstrip.proj

Lee_microstrip/full_modal_omit_voltage/Lee_
microstrip.proj
Lee_microstrip/full_modal_omit_current/Lee_
microstrip.proj
Lee_microstrip/half/Lee_microstrip.proj

Simonovich_stripline/Simonovich_stripline.proj

Microstrip with comparison to literature simulation using line
setups

Microstrip testing setup variation with comparison to literature
simulation using line setup

Microstrip testing setup variation with comparison to literature
simulation using line setup

Microstrip with comparison to literature simulation using modal
setups

Microstrip testing setup variation with comparison to literature
simulation using modal setup

Microstrip testing setup variation with comparison to literature
simulation using modal setup

1/2 microstrip testing PMC boundary with comparison to liter-
ature simulation

Stripline with comparison to literature measurement
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D Accuracy Studies

The projects are located in the installation area in the ”regression/OpenParEM2D” directory. The cases are
discussed in detail in ”OpenParEM2D_Theory_Methology_Accuracy.pdf”.

Project Description

Simonovich stripline_study/Simonovich_ Stripline with comparison to measurement and simulation from

stripline.proj the literature

WRI0_rectangular_waveguide/ WR90/WR90_ Lossy rectangular waveguide with comparison to exact results

order_6_lossy_study/WR90_accuracy_run.proj

WRI0_rectangular_waveguide/ WR90/WR90_ Lossless rectangular waveguide with comparison to exact results

order_6_study

coaxEighth_study/coax_accuracy _run.proj Coax with comparison to exact results

partially_filled_rect_waveguide/PartFilled_order-  Partially filled rectangular waveguide with comparison to ana-

6_study /PartFilled_accuracy_run.proj lytical results

differential_pair/diff_pair_study /diffPair.proj Differential pair with comparison to simulation from the litera-
ture
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