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1 Introduction

OpenParEM2D is a full-wave electromagnetic solver using the finite-element method to solve for the
frequency-dependent complex propagation constant, fields, and characteristic impedance for the dominant
and optionally higher-order modes for transmission lines and waveguides. The Galerkin procedure is applied
to Maxwell’s equations to derive the weak form of the wave equation in E which is then specialized for
transmission lines and waveguides by assuming that the z-dependence in the direction of propagation is
restricted to e−γz, where γ is the complex propagation constant. The integrals are calculated with calls to
the MFEM library [1][2], boundary conditions are applied, and finally the generalized complex eigenvalue

problem given as Ax = λB x is solved for γ and E. Post-processing calculates the magnetic field H, power,
characteristic impedance, and a loss adder for surface impedances. The methodology uses fully populated
matrices, so OpenParEM2D is not configured for GPU processing.

Boundary conditions include perfect magnetic conductor (PMC), perfect electric conductor (PEC), and
surface impedance. The default boundary condition for all edges facing voids is PEC. Edges facing voids
can be set to PMC or surface impedance. Losses due to surface impedances are calculated from the H and
added to the dielectric losses, which are calculated as part of the eigenvalue solution.

This document covers the theory and methodology of how OpenParEM2D builds and solves the eigenvalue
problem along with post-processing calculations. Accuracy is demonstrated with a number of test cases. For
details about how to set up and run OpenParEM2D, see the separate document ”OpenParEM2D Users
Manual.pdf”.

2 Theory and Mapping to MFEM

2.1 Wave Equation

The methodology of OpenParEM2D follows that of [3]. For completeness and clarity, the entire method-
ology is re-derived here.

Starting at the most fundamental level with Maxwell’s equations, we have

∇× E = −jωµH (1)

and
∇×H = J + jωϵE. (2)

Let J = σE and ϵc =
σ
jω + ϵ, then (2) becomes

∇×H = jωϵcE. (3)

Eliminating H from (3) and (1) yields

∇× (− 1

jωµ
∇× E) = jωϵcE. (4)

Multiply through by jωµ◦ and set k2◦ = ω2µ◦ϵ◦ to get the wave equation

∇× (
1

µr
∇× E) = k2◦ϵcrE, (5)

where ϵcr = ϵc/ϵ◦ and µr = µ/µ◦.

2.2 Galerkin’s Procedure

Multiply (5) by a test field T and integrate over the volume, Ω, to get∫∫∫
Ω

∇× (
1

µr
∇× E) · TdV =

∫∫∫
Ω

k2◦ϵcrE · TdV. (6)
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The surface of Ω is designated by δ. Conventionally, the normal to the volume at the surface is given by n̂,
which points out of the 3D volume. Apply the vector identity∫∫∫

Ω

∇× u · v dΩ =

∫∫∫
Ω

u · ∇ × v dΩ−
∫∫

δ

(u× n̂) · v dS (7)

with u = 1
µr

∇× E and v = T and rearranging, then∫∫∫
Ω

1

µr
∇× E · ∇ × T dV − k2◦

∫∫∫
Ω

ϵcrE · TdV −
∫∫

δ

(
1

µr
∇× E × n̂) · T dS = 0. (8)

Reorder the cross products involving n̂ to get the weak form of the wave equation in E as∫∫∫
Ω

1

µr
∇× E · ∇ × T dV − k2◦

∫∫∫
Ω

ϵcrE · TdV +

∫∫
δ

n̂× (
1

µr
∇× E) · T dS = 0, (9)

which has two terms over the volume and one over the surface.

2.3 Specialization for Transmission Lines and Waveguides

Eq. 9 is general for 3D spaces, but for transmission lines and waveguides, the 3D problem is specialized
as an electromagnetic field on a 2D surface in the x-y plane that changes in the z-direction only with the
dependence e−γz. With this z-dependence, ∂

∂z → −γ. Following [3], the electric field can be written in terms
of its transverse and longitudinal components as

E = Et + Ez ẑ. (10)

as well as the operator

∇ = ∇t +
∂

∂z
ẑ = ∇t − γẑ. (11)

Substituting these into (9) and equating the transverse components (t) yields

∇t ×
1

µr
∇t × Et − γ2 1

µr
Et − γ

1

µr
∇tEz = k2◦ϵcrEt (12)

while matching the longitudinal (z) components yields

∇t ·
1

µr
∇tEz +

1

µr
γ∇t · Et + k2◦ϵcrEz = 0. (13)

An issue with (12) is the presence of both γ and γ2. The targeted generalized eigenvalue equation form is

Ax = λB x, so a reformulation is needed. Per [3], this can be accomplished by a change in variable equating
et = γEt along with ez = Ez for notational consistency. Multiplying through (12) by γ then making these
substitutions results in

∇t ×
1

µr
∇t × et − γ2(

1

µr
et +

1

µr
∇t ez) = k2◦ϵcret (14)

and similarly for (13) multiplying through by γ2

γ2(∇t ·
1

µr
∇t ez +

1

µr
∇t · et + k2◦ϵcrez) = 0. (15)

Now (14) and (15) can be configured into a generalized eigenvalue problem of the form Ax = λB x with
λ = γ2. Once the eigenvalue problem is solved for the eigenvalues and eigenvectors, γ is found from the
square root of λ and the fields are found by dividing the et portion of the eigenvector with γ and carrying
over the ez portion to Ez.
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2.4 Building the Eigenvalue Problem

To build the standard generalized eigenvalue problem, (14) and (15) are converted to matrix form using
finite elements with the the methods in the MFEM library. Since the MFEM library is implemented only
for real numbers, the methods must be called twice, once for the real part and once for the imaginary part,
which are then combined into a complex matrix for solving as a complex eigenvalue problem. For simplicity,
the needed methods are noted here once, while OpenParEM2D implements the full complex calculation. All
of the operations are in the OpenParEM2D method fem2D::fem2D.

For the finite element implementation of the fields, the two variables are the vector et and the scalar ez.
Different finite elements are needed to represent these since one is a vector and the other is a scalar. For
et, Nedelec finite elements are used because they are vectors and because the divergence is zero, inherently
satisfying Gauss’s law assuming no free charge. Use of Nedelec elements avoids spurious solutions. For ez,
scalar H1 elements are used.

Both sets of finite elements are used on the same mesh to set up and solve the eigenvalue problem for
et and ez. The finite elements must be tracked, but for the most part, the MFEM library takes care of the
details in structures called finite element spaces.

Finite elements implement mathematical operations using bilinear form integrators and mixed bilinear
form integrators on finite element spaces. For vector-to-vector operations, such as for the curl operator,
MFEM uses bilinear form integrators on a single finite element space, resulting in a square matrix. For
vector-to-scalar and scalar-to-vector operations, such as the dot product (vector to scalar) and the gradient
(scalar to vector), MFEM uses mixed bilinear form integrators on two finite element spaces, resulting in a
non-square matrix.

The bilinear form integrators support element-by-element variation in the permittivity and permeabil-
ity. OpenParEM2D supports complex permittivity that can vary by regions, and by extension element-by-
element. For permeability, only real permeability is supported, but it can very by region. Extension of
OpenParEM2D to support complex permeability would require adding support for complex matrices similar
to that used for the permittivity. All materials are assumed to be isotropic, but the MFEM library does
support extension to anisotropic materials.

Implementing the four terms of (14) term-by-term, the first term is

∇t ×
1

µr
∇t × et, (16)

and it is implemented by the MFEM CurlCurlIntegrator using a bilinear form integrator on the Nedelec

finite element space. Following the notation in [3], the resulting matrix is called St, and it multiplies et. The
second term is

1

µr
et, (17)

which is implemented by MFEM’s VectorFEMassIntegrator using a bilinear form integrator on the Nedelec

finite element space, resulting in the matrix T t mur multiplying et. The third term is

1

µr
∇t ez, (18)

which is implemented by MFEM’s MixedVectorGradientIntegrator using a mixed bilinear form integrator
going from the H1 finite element space to the Nedelec finite element space, with the resulting matrix called

G multiplying ez. Finally, the fourth term is
k2◦ϵcret, (19)

which is implemented using MFEM’s VectorFEMassIntegrator using a bilinear form integrator on the Ned-

elec finite element space, resulting in two matrices T t eps re and T t eps im for the real and imaginary parts,
respectively, multiplying et. Combining the matrices results in the implementation of (14) in matrix form as[

St − T t eps 0
? ?

] [
et
ez

]
= γ2

[
T t mur G

? ?

] [
et
ez

]
, (20)

where ? are place holders for (15).
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Implementing the three terms of (15) term-by-term, the first term is

∇t ·
1

µr
∇t ez, (21)

which is implemented using MFEM’s DiffusionIntegrator with a bilinear form integrator on the H1 finite

element space, resulting in the matrix Sz multiplying ez. The second term is

1

µr
∇t · et, (22)

which is implemented using MFEM’s MixedVectorGradientIntegrator with a mixed bilinear form integrator

going from the Nedelec finite element space to the H1 finite element space, resulting in the matrix GT
multiplying ez. Finally, the third term is

k2◦ϵcrez, (23)

which is implemented using MFEM’s MassIntegrator with a bilinear form integrator on the H1 finite element

space, resulting in the real and imaginary matrices T z eps re and T z eps im multiplying ez. Combining the
matrices results in the implementation of (15) in matrix form as[

? ?
0 0

] [
et
ez

]
= γ2

[
? ?

GT Sz + T z eps

] [
et
ez

]
, (24)

where ? are place holders for (14).
Combining (20) and (24) yields the final eigenvalue problem to be solved as[

St − T t eps 0
0 0

] [
et
ez

]
= γ2

[
T t mur G

GT Sz + T z eps

] [
et
ez

]
, (25)

which matches (14) in [3]. For the eigenvalue problem of the form Ax = λB x, then

A =

[
St − T t eps 0

0 0

] [
et
ez

]
(26)

and

B =

[
T t mur G

GT Sz + T z eps

] [
et
ez

]
, (27)

with λ = γ2 The eigenvalue problem is solved using SLEPc [4] in the subroutine eigensolve in file
eigensolve.c.

2.5 Boundary Conditions

Two boundary conditions are applied before the solution of the eigenvalue equation. For PEC boundaries,

all rows and columns of A for the PEC degrees of freedom (DOFs) are zero’ed out including the diagonal

term, while for B the rows and columns are zero’ed out and 1
k2
◦
is placed on the diagonal for improved

numerical performance. The default for all boundaries is PEC. For PMC boundaries, the row and column
are simply left in place for the PMC DOFs. These operations are performed in the eigensolve function in
file eigensolve.c.

2.6 Calculating H from E

Slightly rearranging (1) to find an expression for H produces

H = − 1

jωµ
∇× E. (28)
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Similar to Sec. 2.3, the electric and magnetic fields plus ∇ can be written in terms of transverse and
longitudinal components and the propagating assumption e−γz can be applied. For H = Ht + Hz ẑ, then
making the substitutions and equating the transverse (t) part of (28) results in

Ht = − 1

jωµ
∇t × Ez ẑ +

γ

jωµ
ẑ × Et, (29)

while equating the longitudinal (z) part results in

Hz = − 1

jωµ
∇t × Et. (30)

2.6.1 Ht

For programming convenience, multiplying through (29) by jωµ results in the form

jωµHt = −∇t × Ez ẑ + γẑ × Et. (31)

It is also convenient to utilize matrix operations to better align with available MFEMmethods. The identities

∇t × Ez ẑ = −
[

0 −1
1 0

]
∇t Ez, (32)

and

ẑ × Et =

[
0 −1
1 0

]
Et (33)

enables (31) to be re-written as

jωµHt =

[
0 −1
1 0

]
∇t Ez + γ

[
0 −1
1 0

]
Et. (34)

Applying the Galerkin procedure to (34) by multiplying through by a weight T t and integrating over the
surface results in

j

∫∫
S

ωµHt · T t dS =

∫∫
S

[
0 −1
1 0

]
∇t Ez · T t dS + γ

∫∫
S

[
0 −1
1 0

]
Et · T t dS. (35)

Using Nedelec finite elements for Ht, the three terms can be converted to matrices using MFEM methods.
The first term is

j

∫∫
S

ωµHt · T t dS, (36)

which is implemented using MFEM’s VectorFEMassIntegrator with a bilinear form integrator on the Nedelec

finite element space, resulting in the matrix M t multiplying Ht. The second term is∫∫
S

[
0 −1
1 0

]
∇t Ez · T t dS (37)

which is implemented using MFEM’s MixedVectorGradientIntegrator with a mixed bilinear form integrator

going from the H1 finite element space to the Nedelec finite element space, resulting in the matrix Cz

multiplying Ez. The third term is ∫∫
S

[
0 −1
1 0

]
Et · T t dS, (38)

which is implemented using MFEM’s VectorFEMassIntegrator with a bilinear form integrator on the Nedelec

finite element space, resulting in the matrix Zt multiplying Et. Together, the three matrices form a linear

algebra problem of the standard form Ax = b given as

jM tHt = Cz Ez + γZtEt, (39)

where the only unknown is Ht and CzEz + ZtEt multiplies out to a vector, allowing Ht to be solved
using PETSc [5] in the subroutine Hsolve in the file Hsolve.c. The matrices are calculated in the method
fem2D::fem2D.
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2.6.2 Hz ẑ

Rearranging then applying the Galerkin procedure by multiplying through (30) by a weight Tz and
integrating over the surface yields

j

∫∫
S

ωµHzTz dS = −
∫∫

S

(∇t × Et)Tz dS. (40)

Using H1 finite elements for Hz, the two terms can be converted to matrices using MFEM methods. The
first term is ∫∫

S

ωµHzTz dS, (41)

which is implemented using MFEM’s MassIntegrator with a bilinear form integrator over the H1 finite

element space, resulting in the matrix Mz multiplying Hz. The second term is∫∫
S

(∇t × Et)Tz dS, (42)

which is implemented using MFEM’s MixedScalarCurlIntegrator with a mixed bilinear form integrator going

from the Nedelec finite element space to the H1 finite element space, resulting in the matrix Ct multiplying
Et.

The two matrices form a linear algebra problem of the standard form Ax = b given as

jMzHz = −Ct Et, (43)

where the only unknown is Hz and Ct Et multiplies out to a vector, allowing Hz to be solved using PETSc
in the subroutine Hsolve in the file Hsolve.c. The matrices are calculated in the method fem2D::fem2D.

2.7 Conductor Loss Adder

The solution to the eigenvalue problem includes dielectric losses through the complex permittivity, but all
boundary conditions are PEC or PMC, so no conductor losses are directly included in the result. Conductor
losses must be calculated separately and added to the dielectric losses to get the total loss.

The power dissipated in the conductors can be calculated with (2.131) from [6], repeated here as

Pconductor =
1

2
Rs

∫
ℓ

|Ht|dℓ, (44)

where Rs is the surface resistance and the integration goes over all PEC boundary lines. The calculation is
performed in the method Fields::calculatePerturbationalLoss using MFEM boundary integrators on
VectorFEDomainLFIntegrator with Ht and DomainLFIntegrator on Hz. Surface roughness is modeled by
increasing the surface resistance using the cannon-ball model of surface roughness [7].

2.8 T v and T i

Since all solutions produced by OpenParEM2D are for modes of a transmission line or waveguide, voltage
and current calculations require integration paths customized for each mode. When a single mode is being
simulated, the needed paths are generally well known. For higher-order modes, the required paths may not be
well understood. A common multi-mode simulation is for multiconductor transmission lines found in printed
circuit boards and semiconductor packages, and except for differential pairs, the needed integration paths
for the modes are not known. For the special case of multi-conductor transmission lines, OpenParEM2D
allows the definition of integration paths for the individual conductors then derives the needed paths for the
modes.

Consider the multiconductor transmission line in Fig. 1 with two symmetric conductors. OpenParEM2D
will calculate an even and an odd mode for this configuration, and the integration paths for voltage and
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Figure 1: A multiconductor transmission line with two conductors.

current for each mode involve both conductors. For such a symmetric pair, the paths are known, but for a
general N-conductor transmission line, they are not.

To enable the calculation of the characteristic impedances of the modes of the N-conductor case, Open-
ParEM2D allows a special set of integration paths to be defined using the line setup [see ”OpenParEM2D
Users Manual.pdf” for more detail on setups]. A line setup provides a current path around each conductor
and a voltage path from the ground plane to each conductor. In Fig. 1, the current paths are P1 and
P2, while the voltage paths are P3 and P4. OpenParEM2D calculates the voltages and currents for the
paths for each mode. Note that these voltages and currents are not the modal voltages and currents. For an
N-conductor multiconductor transmission lines, there are N sets of N voltages and currents.

The modal voltages and currents are some combination of the line voltages and currents. Calling the line
voltages V l, the line currents I l, the modal voltages V m, and the modal currents Im, then in general

V m = T v V l (45)

and
Im = T i I l. (46)

The goal is to find T v and T i. Each row represents one mode and each column represents one line voltage
or current.

Starting with currents, for mode j, column k is filled out with the sign of the real part of the current for

line k. So T i[j, k] = ±1 depending on the sign of the current from line k for mode j. Since currents must be
conserved, the sum of the line currents equals the return current, Ir. In Fig. 1, the outer box is the return
path supporting the return current. The mode current, Im, is sum of the line currents with the sign flips

from T i applied. A scale factor sj is calculated as

sj =
1

2

|Im|+ |Ir|
|Im|

, (47)

then the row of T i and Im are scaled by sj . To ensure that the fields have the same polarity across ports, if

the sign of the first column is negative, then the fields for that mode are flipped in sign and the row of T i

flipped to match.

Moving on to voltages, T v is calculated as

T v = [(T
∗
i )

−1]T . (48)

The modal voltage for mode j is calculated as the sum of the line voltages scaled by row j from T v.

The modal currents and voltages are stored for calculating characteristic impedances, and T v and T i are
passed to OpenParEM3D to support the conversion of modal S-parameters to single-ended S-parameters.

The calculations for T v and T i can be found in Mode::calculateModalCurrent and
Mode::calculateModalVoltage.

To illustrate the calculation, consider the differential pair from Fig. 1, for which the answer is known.
The first solved mode is the common mode, for which the currents on the two conductors are equal, say
0.1 A. The modal current is 0.2 A, the return current is -0.2 A, and sj = 1. The second solved mode is the
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differential mode with equal and opposite line currents of 0.1 A, modal current of 0.1 A, zero return current,

and sj = 0.5. T i is then

T i =

[
1 1
0.5 −0.5

]
(49)

and T v is

T v =

[
0.5 0.5
1 −1

]
, (50)

the expected results.

3 Adaptive Mesh Refinement

Adaptive mesh refinement uses MFEM’s implementation of the Zienkiewicz-Zhu error estimation proce-
dure in the MFEM method mfem::L2ZienkiewiczZhuEstimator. The error is calculated using the Curl-
CurlIntegrator on only the transverse component of the magnetic field under the assumption that the trans-
verse component dominates the longitudinal component. Since the magnetic field is calculated from the
electric field, any errors in the electric field are magnified in the magnetic field, leading to better identifica-
tion of areas needing refinement. Use of the just the CurlCurlIntegrator misses the second term of the wave
equation, so the error metric does not use a complete representation of the magnetic field.

Mesh errors are calculated for each solved mode. The fraction of the mesh that is to be refined is set by
mesh.refinement.fraction, then this number of elements is divided between the solved modes. So if N
modes are being solved, then mesh.refinement.fraction/N elements are refined per mode to ensure that all
modes are equally refined for accuracy.

The error is calculated twice in Mode::ZZrefineMesh, once for the real part and once for the imaginary
part of the transverse magnetic field, then the error magnitude is used for ranking mesh elements for refine-
ment. Once the errors per mesh element are calculated, it is straightforward to sort them to identify the mesh
elements with the largest error and then to refine them using the MFEMmethod mfem::GeneralRefinement.

4 Data Structures and Algorithm Notes

4.1 Data Structures

At the level of main in OpenParEM2D.cpp, the primary data structures are defined and listed in Table 1.

Table 1: Primary Data Structures

Class Variable Function

BoundaryDatabase boundaryDatabase Boundary and port definitions except for 2D meshes
BorderDatabase borderDatabase Keeps track of element attributes in the mesh
FrequencyPlan frequencyPlan Frequency plan for refinement sequence and

solution frequencies
MaterialDatabase materialDatabase Material specifications

localMaterialDatabase
MeshMaterialList meshMaterials Materials used within a mesh
ResultDatabase resultDatabase Computed results

ConvergenceDatabase convergenceDatabase Keeps track of convergence information
FieldPointDatabase fieldPointDatabase Stores computed field values

9



4.2 Internal File Transfers

MFEM is inherently based on real math with some wrappers implementing some level of support for
complex operations. OpenParEM2D must solve a generalized complex eigenvalue problem, and solving it
using only real calculations is possible but results in very poor performance. To take advantage of the
complex number support in PETSc and SLEPc, OpenParEM2D needs to convert real matrices to complex
matrices. MFEM does not provide a method to convert from its parallel matrix format HypreParMatrix to
a serial format except when writing to a file. At the recommendation of the MFEM team, file transfers are
used to convert real parallel matrices to serial matrices. The data is written out then read back in to PETSc
complex parallel matrices. When complex calculations are finished in PETSc and/or SLEPc, file transfers
again transfer data back into real data structures for continuing processing with MFEM methods.

Using file transfers to re-format data is certainly inefficient. However, testing shows that the impact on
overall run time is negligible since the matrix sizes for 2D simulations are fairly small.

Using file transfers for 3D simulations would be impractical. During development of OpenParEM3D,
the subroutine hypre ParCSRMatrixToMat in file csr.c in the OpenParEM3D source tree was developed
to do the data conversions in memory, eliminating the need for file transfers. A good upgrade project
for OpenParEM2D is to replace the file transfers with hypre ParCSRMatrixToMat, although this is not a
straightforward substitution.

4.3 DOFs and Boundary Identification

A variable used to implement a finite element is referred to as a degree of freedom (DOF). A higher-order
finite element requires more DOFs than a lower-order element. If a finite element has an edge or side that
falls on a boundary, then it will have DOFs that affect the value of the finite element on the boundary.
Proper setup of problems solving differential equations involve setting boundary conditions, so the ability to
identify boundary DOFs is critical.

MFEM provides the ability to limit operations to specific DOFs though the use of attributes stored in
the mesh. Each mesh element includes an attribute for the element DOFs not associated with a boundary
[the domain attribute] and an attribute for element DOFs associated with a border [the border attribute]. In
the MFEM mfem::Mesh class, the domain attribute can be obtained with the method GetAttribute, while
the border attribute can be obtained with the GetBdrAttribute.

Functions supporting border attributes are provided a list with a length equal to the number of border
attributes used, and if the function is to apply to the border, then the list’s entry is set to 1, otherwise 0.
Suppose a mesh has 3 different borders with borders indicated by border attributes 1, 2, and 3. A function
call with a list with values [0,1,0] will only apply to border DOFs with the border attribute set to 2. A
quirk of MFEM is that border attribute 0 is not used. A good example of this capability is fem2D::get ess

tdof ND using MFEM’s GetEssentialTrueDofs method. fem2D::get ess tdof ND creates a list of DOFs
on which to apply the PEC boundary, and this list is used in eigensolve.c to modify the matrix to create
the PEC boundary condition.

Boundaries are marked in the 2D mesh using the method BoundaryDatabase::mark boundaries with
the main functionality in method Boundary::markMeshBoundaries, which applies geometrical checks to see
if the edge of a mesh element falls on a boundary, and if so, then marks the boundary mesh element with a
border attribute indexing into the border database.

Mesh elements can only have one border attribute, but information regarding both the boundary condition
and the mode need to be stored for the mesh. By storing an index in the mesh to the border database, more
than one border attribute per mesh element can be created.

4.4 Parallel Processing with MPI

Parallel processing using MPI is used extensively through calls to MFEM and PETSc, which are both
heavily parallelized. Time-consuming number crunching occurs in these libraries, so OpenParEM2D benefits
from their expert use of MPI. Otherwise in OpenParEM2D, MPI is sparingly used because of the lack of
return on the programming effort. It simply makes no sense to parallelize code that represents a tiny fraction
of the overall run time. In code where MPI is used, it is primarily present to simply keep data structures
aligned for use with MFEM, PETSc, and SLPEc.

10



In coding for MPI, a distinction must be made between serial and parallel data structures and operations
that are or are not collective. Serial data structures do not support parallel operations with MPI. When
these data structures are used, the data is generated and used on all processors when MPI is used. All data
is available to all processors at all times, so this is not efficient in terms of computations or memory usage.
Parallel data structures support the distribution of the data across processors when MPI is used. The data
available to a given processor is a fraction of all of the data, and processors must communicate using MPI
to gain access to data needed to complete calculations.

When operating on parallel data structures, functions can be collective or not collective. A collective
function is one where the function itself contains all needed MPI operations to complete the calculations
across processors. A non-collective function is one where the function does not complete all calculations,
then it is up to the programmer to complete the calculations.

OpenParEM2D is coded using c and c++, and it uses the libraries MFEM, PETSc, and SLEPc. The
following sections summarize data structures and function operations.

4.4.1 c and c++

All c and c++ data types and structures are serial and all functions are non-collective. To make these
work efficiently in parallel, meaning remove duplication, requires manual MPI coding. In OpenParEM2D,
parallelization using c and c++ is primarily used to align data for use with the libraries. One exception is
parallelization for use with file transfers to avoid many processors accessing a file at the same time, which
can cause problems such as hanging.

4.4.2 PETSc and SLEPc

SLEPc is based on PETSc and follows its coding style, so comments on PETSc apply to SLEPc, too.
In PETSc, the primary data structures are parallel, with the two most important for OpenParEM2D being
Mat for matrices and Vec for vectors. PETSc functions using Mat and Vec may or may not be collective,
but the PETSc documentation always notes whether a given function is or is not collective. Collective
functions can be called with no further consideration, but non-collective functions require additional coding
to complete the operation. Any calls to VecGetOwnershipRange or MatGetOwnershipRange indicate areas
where additional processing is happening to support a non-collective function.

4.4.3 MFEM

MFEM uses both serial and parallel data structures and collective and non-collective functions. Unlike
PETSc, the MFEM documentation does not specify which is which. However, MFEM does follow a naming
convention that provides the needed indications. Any data structure or function call that includes ”Par” in
the name is either a parallel data structure or a collective function call. Otherwise, the data is serial or the
function call is not collective.

For example, a vector in MFEM can be implemented as a Vector from the mfem::Vector class. This
vector is serial. The parallel vector is the HypreParVector from the mfem::HypreParVector class, which
is a derived class from mfem::Vector. Similarly for Matrix and HypreParMatrix, Mesh and ParMesh,
BilinearForm and ParBilinearForm, etc.

All parallel functions in MFEM are collective.

5 Accuracy Demonstrations

A few cases are covered in detail to demonstrate accuracy levels for OpenParEM2D. Besides these ex-
amples, the cases included in the regression suite can also be examined for accuracy since they all compare
to either exact results or to results from the literature, although the regression suite cases are not set up to
demonstrate maximum accuracy.

Accuracy demonstrations are calculated using version 2.0 of OpenParEM2D. For cases using iterative
refinement, re-running the cases using later (or earlier) versions can fail to precisely reproduce the results
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because iterative refinement may terminate earlier or later. To obtain similar results, it may be necessary
to adjust the convergence criteria to obtain the same number of iterations.

5.1 Lossless WR90 Waveguide

Lossless WR90 rectangular waveguide is simulated for comparison against exact results. The project
can be found in regression/OpenParEM2D/WR90 rectangular waveguide/WR90/WR90 order 6 study of the
OpenParEM distribution. The solution uses 6th-order finite elements. The mesh is re-optimized at each
frequency starting with a very sparse mesh of just 4 elements that is uniformly refined once then adaptively
refined. The optimization variable is |γ| with a relative tolerance of 10−9 with two consecutive iterations
and a solution tolerance of 10−13. Tighter settings can achieve somewhat lower errors, but completing the
frequency sweep becomes difficult. The first 5 modes are simulated and compared to the exact theoretical
result calculated by waveguide.c in the OpenParEM2D source directory.

The propagation constant γ is shown in Fig. 2, where γ is plotted as either α/k◦ when a mode is cut
off or β/k◦ when it is propagating. The error vs. the exact theoretical result is shown in Fig. 3, where the
baseline error is about 10−12 except for the expected increase as γ transitions through zero.

Figure 2: γ for the first 5 modes of the lossless WR90 rectangular waveguide.

Figure 3: Error in γ for the first 5 modes of the lossless WR90 rectangular waveguide.

The characteristic impedance and the error vs. the theoretical result for the dominant mode is shown in
Fig. 4. The baseline error is about 10−9.
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Figure 4: Impedance and error for the dominant mode of the lossless WR90 rectangular waveguide.

A field plot for the dominant mode at 10 GHz is shown in Fig. 5, where the black arrows show Re(E),
the white arrows show Re(H), and the background shows Re(|E|). Note that Re(E) and Re(H) are plotted
with different scales.

Figure 5: Field plot for the dominant mode of the lossless WR90 rectangular waveguide.

An interesting but not very useful plot of the real power flow in the longitudinal direction of the cutoff
4th mode is shown in Fig. 6, showing that real power flows in both directions but must balance to zero since
the mode is cut off.

Figure 6: Longitudinal power flow for the 4th mode of the lossless WR90 rectangular waveguide.
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5.2 Lossy WR90 Waveguide

The lossless WR90 waveguide of Sec. 5.1 is re-simulated for the dominant mode including finite conduc-
tivity on the walls of the waveguide. OpenParEM2D first simulates the lossless case then uses the computed
fields to calculate the losses on the conductive boundaries and adds those losses to the dielectric losses di-
rectly computed as part of the eigenvalue problem solution. For this case, there are no dielectric losses, so
all of the losses are due to the losses on the finite-conductivity boundary.

The project can be found in regression/OpenParEM2D/WR90 rectangular waveguide/WR90/WR90 order

6 lossy study of the OpenParEM distribution. The solution uses 6th-order finite elements. The mesh is
optimized at 11 GHz starting with a very sparse mesh of just 4 elements that is then uniformly refined
once then adaptively refined. The optimization variable is α with a relative tolerance of 10−10 with two
consecutive iterations and a solution tolerance of 10−13. After optimization at 11 GHz, the frequency is
swept from 6.75 GHz to 15 GHz.

The propagation constant γ is shown in Fig. 7. The theoretical result is provided by [8] in (17) on
p. 417, and the error vs. the theoretical result is shown in Fig. 8. At the mesh optimization frequency of
11 GHz, the error for α/k◦ is about 10−10 and about 10−12 for β/k◦. Over the entire sweep, the worst-case
error for α/k◦ drops about 1 order of magnitude, while for β/k◦ it drops less than 2 orders of magnitude as
frequency decreases, so the error is still excellent over this 2:1 frequency span with a mesh optimized at a
center frequency.

Figure 7: γ for the dominant mode of the lossy WR90 rectangular waveguide.

Figure 8: Error in γ for the dominant mode of the lossy WR90 rectangular waveguide.

5.3 Partially-Filled Rectangular Waveguide

A lossless partially-filled rectangular waveguide is simulated for comparison against numerical solution of
the transcendental equation of the exact result. The project can be found in the OpenParEM distribution in
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regression/OpenParEM2D/partially filled rect waveguide/PartFilled order 6 study. The studied
example is taken from [9], Fig. 4.7 on p. 161. The waveguide is shown in Fig. 9.

Figure 9: A partially-filled waveguide for analysis.

The transcendental equation providing the complex propagation constant is given in [9] equations (4-56)
and (4-58). These are solved in waveguide.c in the OpenParEM2D source directory.

The propagation constant γ is shown in Fig. 10, where γ is plotted as either α/k◦ when a mode is cut
off or β/k◦ when it is propagating. The error vs. the transcendental solution of the exact theoretical result
is shown in Fig. 11, where the baseline error is about 10−12 except for the expected increase as γ transitions
through zero.

Figure 10: γ for the first 5 modes of the partially filled rectangular waveguide.

Figure 11: Error in γ for the first 5 modes of the partially filled rectangular waveguide.

Plots of the dominant mode at 10 GHz are shown in Fig. 12. The fields plot uses black arrows for Re(E),
white arrows for Re(H), and the background shows Re(|E|). Note that Re(E) and Re(H) use different
scales. The power plot shows the longitudinal component of the real part of the Poynting vector, and since
this mode is propagating, the power is always positive.
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(a) Fields. (b) Power in longitudinal direction.

Figure 12: Computed solutions for the dominant mode at 10 GHz.

5.4 Coaxial Waveguide

A lossless coaxial waveguide is simulated for comparison against exact results. The project can be found
in the OpenParEM distribution in regression/OpenParEM2D/coaxEighth study. The coax has an inner
conductor radius of 0.406 mm, an outer radius of 1.48 mm, and a dielectric with ϵr = 2.26. The structure is
drawn in FreeCAD using polygons with 10 segments per 45◦. Using symmetry with PMC boundaries, 1/8
of the structure is simulated. Assuming perfect circles, the exact impedance is 51.5874640385028 Ω. Since
this is a lossless TEM transmission line, the exact value for β/k◦ =

√
2.26.

The simulation uses 2nd-order finite elements with adaptive refinement stepping down in frequency from
10,000 GHz to 10 MHz in 10× steps to avoid potential convergence issues at low frequencies. Since the mesh
is refined multiple times, the relative tolerance is set to a somewhat loose value of 10−5 converging on |Z◦|.

A field plot is shown in Fig. 13, where black arrows show Re(E), white arrows Re(H), and the background
shows Re(|E|). Note that Re(E) and Re(H) use different scales. The real power traveling down the coax is
shown in Fig. 14, where the power concentrates near the center conductor.

Figure 13: Field plot for the coaxial waveguide at 1 GHz.
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Figure 14: Real power flow for the coaxial waveguide at 1 GHz.

The results are plotted as errors vs. the exact values in Fig. 15. The error for β/k◦ steadily reduces
with increasing frequency until numerical precision is reached around 10−14. Note that an exact match is
achieved at two frequencies. As frequency decreases, the error for β/k◦ steadily increases until the error fails
to meet engineering-level precision of 1% [-2 on the log scale] at about 1 MHz. The reduction in accuracy
is due to Faraday’s and Ampere’s laws progressively decoupling requiring more numerical precision than
double-precision calculations can provide. The error for Z◦ behaves in a similar fashion to β/k◦ except that
the error plateaus at -4.7 [on a log scale] due to the circular structure being modeled as polygons. A zoom of
the power real flow near the conductor is shown in Fig. 16, where the points on the polygon approximation
causes local increases in power, leading to a small increase in the overall power flow with a consequent small
reduction in Z◦, so a small increase in the error, since power appears in the denominator in the power-voltage
definition of Z◦.

Figure 15: Error vs. exact values for the coaxial waveguide.
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Figure 16: Zoom with re scale of the power flow from Fig. 14 near the center conductor.

5.5 Coupled Microstrip

A coupled microstrip is simulated and compared to the simulations for the case in Fig. 8 from [10].
The project can be found in the OpenParEM distribution in regression/OpenParEM2D/differential

pair/diff pair study. The structure is drawn and set up in FreeCAD, meshed with gmsh [11][12], then
solved using 3rd-order finite elements with adaptive refinement sequencing from 100 GHz to 52 GHz to 8 GHz
with a relative tolerance of 0.001 optimizing on |Z◦|.

The initial mesh produced by gmsh is shown in Fig. 17. After adaptive mesh refinement, the final mesh is
shown in Fig. 18, where the adaptive mesh refinement algorithm has concentrated mesh refinement in areas
of rapid changes in the fields near the corners of the strips.

Figure 17: Initial mesh before adaptive refinement.

Figure 18: Final mesh after adaptive refinement.

Results are compared with those scaled off the plots from [10] in Fig. 19 for the even mode and Fig. 20
for the odd mode. For both modes, agreement is excellent for the propagation constant and good for the
characteristic impedance.
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Figure 19: Even mode results for the coupled microstrip from Fig. 8 in [10].

Figure 20: odd mode results for the coupled microstrip from Fig. 8 in [10].

Plots of the fields at 52 GHz are shown in Fig. 21 for the even mode and Fig. 22 for the odd mode,
where black arrows show Re(E), white arrows Re(H), and the background shows Re(|E|) with 16 levels of
discretization to show the iso field lines. Note that Re(E) and Re(H) use different scales.

Figure 21: Plot of the even mode fields.
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Figure 22: Plot of the odd mode fields.

5.6 Lossy Stripline

A lossy stripline is simulated and compared to the simulations and measurements from the case in
Fig. 16, right-hand graph, from [13]. The project can be found in regression/OpenParEM2D/Simonovich

stripline study of the OpenParEM distribution. The structure is set up using builder, meshed with
gmsh, then solved using 2nd-order finite elements with adaptive refinement at 50 GHz optimizing on alpha.
This case demonstrates the accuracy of the surface roughness modeling.

The initial mesh in Fig. 23 is fairly dense with extensive mesh away from the strip. This makes the
problem susceptible to over-meshing. Since the bulk of the needed mesh refinement is near the corners of
the trace, a low value of 0.01 is set for mesh.refinement.fraction so that a relatively small number of
elements are refined at each pass, minimizing the number of elements refined away from the trace. Second
order elements also help minimize issues with over-meshing with the large number of elements far from the
trace having virtually no field variation. Two signs of over-meshing that can appear with this simulation
are failure to converge with a tight convergence tolerance and failure of convergence for H without setting a
much smaller value for solution.tolerance, such as 10−8. The final mesh is shown in Fig. 24 along with
zooms in Figs. 25 and 26.

Figure 23: Initial mesh.

Figure 24: Final optimized mesh.

Figure 25: Zoom of the final optimized mesh around the trace.
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Figure 26: Zoom of the final optimized mesh around the left side trace corners.

Results are compared with those scaled off the plot in [13] in Fig. 27, where the results are in very good
agreement. Errors are plotted in Fig. 28. A field plot at 50 GHz is shown in Fig. 29, where black arrows
show Re(E), white arrows Re(H), and the background shows Re(|E|) with 32 levels of discretization to show
the iso field lines. Note that Re(E) and Re(H) use different scales.

Figure 27: Attenuation results for the case from Fig. 16 in [13].
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Figure 28: Error plot for attenuation.

Figure 29: Field plot at 50 GHz.
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