OpenParEM Installation Manual

Version 2.1

April 2025

Brian Young

Copyright (©) 2025 Brian Young. All Rights Reserved.

Contents
1 Introduction
2 Installing Pre-compiled Binaries

3 Compiling from Source

4 Flow Tools

4.1 FreeCAD . . . o .
4.2 gmsh . . oL
4.3 ParaView e e e
5 Helper Tools and Scripts
5.1 checkError. e e
5.2 projosearch e
5.3 builder e e e
5.4 waveguide L e e
5.5 simplify2D . . . oL
5.6 simplify3D oL e
5.7 process2D and process2D.sh
5.8 process3D and process3D.sh
5.9 TEGreSSIONo e e e e e
5.10 OpenParEM2D save.py o o i it e e
5.11 OpenParEM3D_save.py o v i e e e e e e
5.12 fieldplot.py - e e
5.13 tlined e e e e

6 Execution
7 Computer Considerations for MPI

8 Change Log

1 Introduction

OpenParEM consists of the 3D simulator OpenParEM3D and the 2D simulator OpenParEM2D plus some
helper tools. All can be compiled from source or installed as pre-compiled bindaries for x86 architectures.

OpenParEM uses command-line tools for solving electromagnetic problems once provided with the nec-
essary input files. The primary required input files are a mesh describing the geometry, text files describing
modes for OpenParEM2D and ports for OpenParEM3D, and a text project control file. The user is respon-
sible for pulling together the necessary tools to create the needed files.

Assembling a tool flow is a very significant task. For the development of OpenParEM, a tool flow is
developed around FreeCAD [1], gmsh [2][3], and ParaView [4]. The user’s manuals describe in detail how to
use these tools to complete projects. For FreeCAD and ParaView, provided Python scripts greatly simplify
the effort to set up and review solutions.

2 Installing Pre-compiled Binaries

Pre-compiled binaries are available for x86 Linux and do not require administrator priviledges. The basic
steps for installing binaries are listed below. See the INSTALL file for more details and installation options.

e Download the installation package OpenParEM-version-bin.tar.gz

e Unpack the package:

$ tar -xf OpenParEM-version-bin.tar.gz
$ 1n -s OpenParEM-version OpenParEM

e Change into the base directory and view the installation instructions:

$ cd OpenParEM
$ more INSTALL

e Set the PATH environment variable. See the INSTALL file for details.
e Install Python scripts for FreeCAD and ParaView:

$ cd scripts
$ OpenParEM_build --without-all

The --without-all option installs the scripts while skipping all compilation.
o Test:

$ OpenParEM_test

e Installation is complete if both tests report pass.

3 Compiling from Source

OpenParEM can be compiled for Linux-based operating systems and does not require administrator
priviledges if the needed build tools make, g++, gfortran, and perl are already installed. The basic steps for
compilation are listed below. See the INSTALL file for more details and options.

e Download the installation package OpenParEM-version.tar.gz

e Unpack the package:

$ tar -xf OpenParEM-version.tar.gz
$ 1In -s OpenParEM-version OpenParEM

e Change into the base directory and view the installation instructions:

$ cd OpenParEM
$ more INSTALL

e Install make, g++, gfortran, and/or perl as needed.
e Change into the scripts directory and compile:

$ cd scripts
$./OpenParEM_build --jobs=4 --with-all

On successful compilation, OpenParEM2D and OpenParEM3D are tested. If both tests report pass,
then compilation is complete.

Set the PATH environment variable. See the INSTALL file for details.

Verify that PATH has been properly set by re-running the tests:

$ OpenParEM_test

If the two tests report pass, then installation is complete.

4 Flow Tools

OpenParEM is a command-line tool for running electromagnetic simulations only. Pre- and post-
processing must be handled by other tools.

4.1 FreeCAD

The geometry can be built with any number of different CAD tools, with FreeCAD [1] being a free and
open-source option that works well. FreeCAD is very powerful, but it does have a significant learning curve
that pays off as it is mastered. FreeCAD is scriptable with Python, enabling the development of helper
scripts to simplify the setup of OpenParEM projects.

The easiest installation process is to install FreeCAD from the software management tool provided by
the Linux distribution. Open the tool and search for FreeCAD, and if found, then install. If an option exists,
select the FreeCAD version ” An open source parametric 3D CAD modeler”. However, functionality issues
with macros may occur, in which case installing from packages is required.

Alternatively, to install FreeCAD from packages, execute

$ sudo add-apt-repository --enable-source \
ppa:freecad-maintainers/freecad-stable && \
sudo apt-get update

$ sudo apt-get build-dep freecad

$ sudo apt-get install freecad

Installing from packages is fairly slow and also requires administrator priviledges..

The OpenParEM build installation script installs Python scripts to greatly simplify the use of FreeCAD in
building OpenParEM projects. The installed location is $HOME/ .FreeCAD/Macro. Depending on the version
of FreeCAD being used, it may be necessary to set the location for the python scripts using the ” User macros
location:” box in the ”Execute macro window”.

To run FreeCAD, execute

$ freecad &

On the first use of FreeCAD, set View—Panels—Report View to see messages and errors from the Open-
ParEM macros.

4.2 gmsh

Since OpenParEM uses the finite element method, a mesh of the geometry to be solved is required.
An effective free and open-source mesher is gmsh. Output from FreeCAD can be imported into gmsh and
meshed, then the mesh can be saved for use by OpenParEM. Gmsh is scriptable and callable from source,
but to date, no automation with gmsh for OpenParEM2D or OpenParEM3D has been implemented.

To install gmsh, download the latest version of gmsh from https://gmsh.info/) to a suitable installation
directory gmsh-install-dir, then execute

$ cd gmsh-install-dir

$ gunzip gmsh-4.13.1-Linux64.tgz

$ tar -xf gmsh-4.13.1-Linux64.tar

$ cd $HOME/bin

$ 1n -s gmsh-install-dir/gmsh-4.13.1-Linux64/bin/gmsh gmsh

using the actual downloaded version. If $HOME /bin does not exist, then create it and add it to the PATH
environment variable.
To run gmsh, execute

$ gmsh -format msh22 &

Note that OpenParEM only works with the msh22 format of gmsh due to library limitations.

4.3 ParaView

Both OpenParEM2D and OpenParEM3D can optionally produce outputs to enable viewing of 3D vector
fields using ParaView [4], for which there is a free version. It is highly recommended to review the field
plots at least initially on any new project. While OpenParEM can use arbitrarily high order finite elements,
ParaView is currently limited to finite element orders of 6 and lower. As discussed in Sec. 5.12, a ParaView
script is available to automate the building of plots for 2D solutions.

To install ParaView, execute

$ sudo apt-get install paraview
$ sudo apt-get install paraview-doc
$ sudo apt-get install python3-paraview

This installation process requires administrator priviledges.

The OpenParEM_build installation script installs a Python script to greatly simplify the viewing of fields
from OpenParEM2D simulations. The installed location is $HOME/ . config/ParaView/Macros.

To run ParaView, execute

$ paraview &

5 Helper Tools and Scripts

A number of tools and scripts have been developed to help with setting up projects, project management,
code management, and validation.
5.1 checkError

This code development script scans the source code and checks error message numbers for missing or
duplicate numbers. It is separately run in the OpenParEMCommon, OpenParEM2D, and OpenParEM3D
src directories. Note that the error number convention is 1XXX for OpenParEM Common, 2XXX for Open-
ParEM2D, and 3XXX for OpenParEM3D. There is no convention for the error number orderings, and they
may change from revision to revision.

5.2 proj_search

This is a useful script for finding keywords used in setup files. The format is
$ proj_search has|hasnot search_term

When executed, the script recursively searches all files ending with ”.proj” that either has the search
term or does not. For example, to list the finite element order used in all projects in the directory tree,
execute

$ proj_search has mesh.order

The output can be further processed using grep. To continue the example, to find all projects that use a
mesh order of 6, then execute

$ proj_search has mesh.order | grep 6

5.3 Dbuilder

Builder automates the construction of some common transmission line and waveguide types to help with
impedance and material studies. Outputs for use with OpenParEM2D or OpenParEM3D are selectable. For
more information, see the document ”builder_User_Manual.pdf”.

5.4 waveguide

Waveguide is an unpolished program for calculating propagation constants and characteristic impedances
for rectangular waveguide, rectangular waveguide with symmetry, partially-filled rectangular waveguide,
coaxial cable, and coaxial waveguide with symmetry. The outputs form the basis for the ”"exact” answers
for many of the cases in the OpenParEM2D regression suite. The only documentation for waveguide is the
source code itself. The OpenParEM2D makefile compiles waveguide but does not install it to any location,
but it can be run from the source directory or moved to a convenient location.

5.5 simplify2D

simplify2D reduces an OpenParEM2D setup file (*.proj file in the regression suites) to the bare minimum
by commenting out inputs that use the default value. The goal is to help identify what is unique about a
particular setup.

5.6 simplify3D
simplify3D is the 3D counterpart for OpenParEM3D to simplify2D for OpenParEM2D.

5.7 process2D and process2D.sh

Process2D post-processes OpenParEM2D results and compares against test case values to produce
pass/fail evaluations. Test cases are stored in the project directory with the name project-name_test_
cases.csv. The script process2D.sh automates the use of process2D. To run a project called ”my_project” set
up with the setup file ”my_project.proj” against its test cases, the general command format is

$ process2D.sh my_project.proj N

where N is the number of cores (or processors) to use for parallel processing. The pass/fail evaluations are
saved in the file "my_project_test_results.csv”.

5.8 process3D and process3D.sh

Process3D and process3D.sh are the 3D counterparts for OpenParEM3D to process2D and process2D.sh
for OpenParEM2D.

5.9 regression

regression automates the execution of the regression suite by running process2D.sh or process3D.sh on a
list of projects in the file "regression_case_list.txt” in the directories install-dir/regression/OpenParEM2D
or install-dir/regression/OpenParEM3D . See the "README.txt” files in these directories for more
information on running regression.

5.10 OpenParEM2D save.py

OpenParEM2D _save.py is a Python script that runs in FreeCAD to create the required modes/lines setup
file. Building this file by hand is possible but error-prone. The script enables the necessary setup information
to be included directly in the FreeCAD drawing, then running OpenParEM2D save.py as a macro produces
the needed setup file quickly and accurately. This script is a ”must have” that cannot be overlooked when
using FreeCAD. See the OpenParEM2D user’s manual for specifications on its use in FreeCAD.

5.11 OpenParEM3D save.py

OpenParEM3D _save.py is a Python script that runs in FreeCAD to create the required ports setup file.
Building this file by hand is theoretically possible but is unmanageable even for near-trivial geometries. The
script enables the necessary setup information to be included directly in the FreeCAD drawing, then running
OpenParEM3D _save.py as a macro produces the needed setup file quickly and accurately. This script is a
"must have” that cannot be overlooked when using FreeCAD. See the OpenParEM3D user’s manual for
specifications on its use in FreeCAD, which similar but not identical that for OpenParEM2D _save.py.

5.12 field _plot.py

Field_plot.py is a Python script that runs in ParaView to automate the construction of plots for examining
the fields produced from OpenParEM2D simulations. Highly recommended.

5.13 tline3

The program tline3 is a custom solver for the cascade of three transmission lines or waveguides with
two shunt capacitors at the transitions, and it is used to check matching 3D setups for accuracy. The
documentation is in the source code. For examples of use, see the projects
install-dir/regression/OpenParEM3D/WR90/straight-steps/small
and
install-dir/regression/OpenParEM3D/WR90/straight-steps/small-renorm.

6 Execution

OpenParEM2D and OpenParEM3D are command-line tools executed with the following commands when
parallel processing

$ mpirun -q --oversubscribe -np N OpenParEM2D my_project.proj
$ mpirun -q --oversubscribe -np N OpenParEM3D my_project.proj

and

$ OpenParEM2D my_project.proj
$ OpenParEM3D my_project.proj

when running in serial on a single core. Running on a single core is sometimes convenient when getting a
new project up-and-running.

When parallel processing, the -np option specifies the number of cores to use for the simulation, given
by N. The -q option suppresses messages from the MPI infrastructure, which are rarely needed. The
--oversubscribe is required with OpenParEM3D when N is more than half the number of available cores.

The number of cores to specify, N, requires some consideration. If the simulations are being spread across
multiple computers, it is assumed that the user knows about MPI processing considerations and no further
comments are provided. For simulations on a single computer, N should always be set to equal to or less
than the number of physical cores. For high-performance computing, there is not sufficient left-over capacity
for threads to be utilized. Depending on the computer, setting N to the number of physical cores can (and
probably will) run slower than if N is set to a lower number. The reason is that the available bandwidth
on the CPU itself and to/from memory becomes saturated, so adding more cores causes MPI messages
to be delayed due to limited bandwidth, slowing overall performance. Experimenting with the value of N
can identify the value that produces the fastest run times for a given computer. Different computers have
different optimal values of N. See Sec. 7 for additional discussion.

When running OpenParEM2D with N cores, N copies of OpenParEM2D are run in parallel with one
instance per core. When running OpenParEM3D with N cores, N copies of OpenParEM3D are run with one
instance per core, plus N copies of OpenParEM2D are run with one instance per core while ports are being
solved. For some times during the simulation, 2*N cores are being utilized, and if 2N > the number of physical
cores, then MPI issues an error and exits. Specifying -—oversubscribe allows processing to continue without

errors. OpenParEM3D sleeps while OpenParEM2D runs, so the actual load on the computer is only slightly
more than N.

7 Computer Considerations for MPI

Ultimately, bandwidth saturation limits the performance gains available from increasing the number of
cores applied to a simulation. At some number of cores, the performance gains level out then begin to fall as
the number of cores increase further. Maximizing bandwidth is the key to increasing parallel performance
with MPI.

For an existing computer, the primary upgrade to improving MPI parallel performance is to fully populate
all memory channels with memory sticks. The memory controller will take advantage of the additional
memory channels, improving memory bandwidth and reducing run times. This works even if the additional
memory capacity is not actually needed. For example, if a computer has two memory channels but only one
memory stick, then 1/2 of the memory bandwidth is not being utilized, and adding a second memory stick
on the other memory channel can gain significant performance benefits.

If specifying a computer for high-performance computing with MPI, target computers with the largest
number of memory channels. For desktops, the number may max out at 4, while for workstations, the
number of channels tend to max out at 8. A dual-processor workstation will double the number of memory
channels since each processor has its own set, and MPI is smart enough to split the processing across the
processors to utilize the extra memory channels. As of this writing, a high-end desktop PC will have a single
processor with 4 memory channels, while a high-end workstation will have two processors with 16 memory
channels. For parallel processing with MPI, such a workstation handily beats the high-end PC.

Maximum clock rate does play a role, and higher clock speeds do lead to faster run times for a given
memory bandwidth. High-end desktop PCs tend to have higher clock frequencies than workstations, and
for simulations using low numbers of cores, the high-end PC may produce faster run times than a high-end
workstation. However, the PC saturates its bandwidth more quickly with increasing core count than the
workstation due to memory bandwidth saturation, and at some number of cores, the workstation begins to
produce faster run times, then it can continue driving run times down with increasing core counts until its
memory bandwidth saturates. For a workstation, more memory channels trumps higher clock rates.

To recap, populate all memory channels with memory sticks to maximize bandwidth. If specifying a
computer, prioritize memory channel counts over clock rates. If budget allows, go for maximum memory
channels and maximum clock rate.

8 Change Log

Version Date Description
1.0.1 Sept. 18, 2024 Initial release
1.0.2 Sept. 25, 2024 - Fixed small memory leak in OpenParEM3D

- Updated installation documentation for Ubuntu 22.04.5 LTS
- Added change log to the installation documentation
1.0.3 Oct. 5, 2024 - Fixed a memory cleanup error
- Ubuntu 24 now supported
- Updated installation documentation for Ubuntu 24.04.1 LTS

2.0.0 Mar. 4, 2025 - Added detail for clarification
- Rev’ed the release to 2.0.0 to align with OpenParEM3D
2.1.0 April 29, 2025 - Revamped for the merging of the OpenParEMCommon, OpenParEM2D, and

OpenParEM3D into a single project
- Updated for new build script

References

[1] https://www.freecad.org

[2] C. Geuzaine and J.-F. Remacle, ”Gmsh: a three-dimensional finite element mesh generator with built-in
pre- and post-processing facilities,” International Journal for Numerical Methods in Engineering, 79(11), pp.
1309-1331, 2009.

https://gmsh.info

]
[4] https://www.paraview.org
| https://github.com

I

https://www.virtualbox.org

