OpenParEM2D Impedance Guide

Overview

- Characteristic impedance is a very important design target and a large reason for the existence of 2D electromagnetic (EM) simulators.
- However, characteristic impedance is not a fundamental quantity in EM.
 - There are many definitions combining voltage, current, and power.
- The user must use a definition for characteristic impedance that is useful for the problem at hand.
 - The best definition is the one that is most useful in quantifying reflections for a particular transmission line or waveguide used in a specific system.
- OpenParEM2D is a general full-wave 2D EM solver, so it is capable of calculating characteristic impedance using any combination of voltage, current, and power.
- This presentation covers the general setups in detail.

Characteristic Impedance Definitions

- Symbol definitions
 - V voltage
 - I current
 - P average power propagation
 - Z_o characteristic impedance
- Basic relationships
 - $Z_0 = V/I$
 - P=1/2VI*
- Combining these leads to 3 definitions for Z_0
 - (a) $Z_0 = V/I$
 - (b) $Z_0 = 2P/|I|^2$
 - (c) $Z_0 = 1/2|V|^2/P$
- It is up to the user to decide which definition is best to use for the problem at hand
 - In most cases, there is a conventional selection that is made for a given type of transmission line or waveguide.
- The selection is made in the setup file as
 - solution.impedance.definition string
- The string is "VI" for definition (a), "PI" for (b), or "PV" for (c). "none" indicates that no Z_0 calculation is to be made.
- With the Zo definition selected, the user must properly set up either the voltage or current calculation, or both.
 - Note that P is a fundamental EM quantity and is automatically calculated without user input.

Voltage Setup

- Voltage is calculated as a line integral of the electric field along a path.
 - OpenParEM2D calculates the line integral from the computed electric field given the integration path supplied by the user.
 - The details of adding paths are covered in the user manual and the specifications document in the section on "Boundary/Mode File Specification".
- Generally, a path will start on one conductor and end on another.
- OpenParEM2D does not provide any checks on whether a voltage path is set up correctly.
 - A path can start anywhere and end anywhere.
 - It will warn if the path falls outside of the physical space of the problem.

Example

- The boundary/modes file for the example regression/Lee_microstrip is shown to the right.
- This is a microstrip, so the voltage line goes from the ground plane to the center conductor.
 - The middle of the center conductor is best since the fields are smoothest there.

assigning the path to mode 1 to calculate the line integral

 OpenParEM2D will solve for the tangential electric fields then integrate along the path V1 to find the voltage. It will assign the voltage to mode 1 for calculating characteristic impedance.

```
#OpenParEMmodes 1.0
File
   name=Lee microstrip.FCStd
EndFile
Pat.h
   name=V1
                               path describing
   point=(0.00125,0.0)
                               the voltage
   point=(0.00125,0.00025)
   closed=false
                               integration line
EndPath
Path
   name=line1
   point=(0.001125,0.00025)
   point=(0.001375,0.00025)
   point=(0.001375,0.0003)
   point=(0.001125,0.0003)
   closed=true
EndPath
Mode
   mode=1
   type=voltage
   path=V1
EndMode
Mode
   mode=1
   type=current
   path=line1
EndMode
 voltage integration line
```

Current Setup

- Current is calculated directly from Ampere's law as a closed line integral around a conductor.
 - Similar to the voltage discussion, OpenParEM2D calculates the line integral from the solved magnetic field using a path provided by the user.
- Generally, a current path is set up to go around a conductor.
- OpenParEM2D checks for closed paths and warns if points fall outside of the physical cross section.

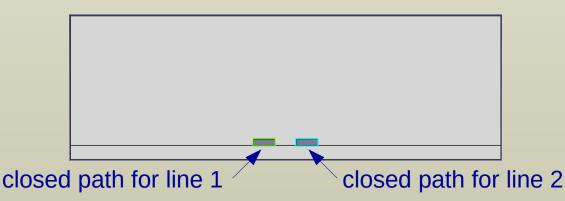
Example

- The boundary/modes file for the example regression/Lee_microstrip is shown to the right.
- This is a microstrip, so the closed current path goes around the center conductor.
 - The path crosses the corners where the fields are not smooth, so the current is slow to converge.
- OpenParEM2D will solve for the tangential magnetic fields then integrate along the closed path line 1 to find the current, then it will assign the current to mode 1 for calculating characteristic impedance.

assigning the path to mode 1 to calculate the line integral

```
#OpenParEMmodes 1.0
 File
    name=Lee microstrip.FCStd
 EndFile
 Path
    name=V1
    point=(0.00125,0.0)
    point=(0.00125,0.00025)
    closed=false
 EndPath
 Path
    name=line1
                                path describing
    point=(0.001125,0.00025)
    point=(0.001375,0.00025)
                                the current
    point=(0.001375,0.0003)
                                integration line
    point=(0.001125,0.0003)
    closed=true
 EndPath
 Mode
    mode=1
    type=voltage
    path=V1
 EndMode
 Mode
    mode=1
    type=current
    path=line1
 EndMode
current integration path
         as a closed loop
```

Multi-Mode Setup


- When OpenParEM2D is solving for more than one mode, the user must make more decisions regarding the setup.
- Being a full-wave EM 2D simulator, fundamentally, the computed solutions are the modes of the transmission line or waveguide.
 - All voltage and current calculations are made on the modes.
 - Modes are orthogonal, so there is no coupling between them.
- OpenParEM2D provides two ways to set up impedance calculations.
 - modal
 - The voltage and/or current paths are set up to match the field configurations of the each mode.
 - Since the modes are orthogonal, this setup results in one impedance per mode.
 - This setup can be very challenging and may be of interest to those interested in exploring modes in detail.
 - line
 - The voltage and/or current paths are set up uniformly across conductors irrespective of field configurations.
 - The impedance calculation results in a matrix result.
 - This setup is relatively simple and likely the method of choice for most users.
- For a single conductor, the modal and line setups are identical.
- The two methodologies are covered in detail below.

Multi-Mode Setup: Modal

- The modal setup follows the pure electromagnetic definition for modes.
- When OpenParEM2D is asked to solve for N modes, the N modes are calculated and stored in N data structures.
 - The modes are orthogonal.
- The user can provide up to N Z₀ definitions.
 - The setups are differentiated by mode number.
 - The user must align the definition to the correct mode number.
 - OpenParEM2D simply then uses the path and Z_0 definition per mode to calculate Z_0 for each mode.
 - If a definition for a mode is missing, then OpenParEM2D simply skips the impedance calculation.
- The modal calculation is called for by the following line in the setup file:
 - solution.impedance.calculation modal

2-mode modal example - Z using current

- The boundary/modes file simplified for currents for the example regression/differential pair/diff pair modal is shown to the right.
- This is a coupled microstrip, so there are two modes.
 - common mode current travels down both conductors and returns on the ground plane
 - differential mode current travels down one conductor and returns on the other
- The current paths must be set up to reflect how the modes use the conductors.
 - "Easy" for 2 conductors. Challenging, otherwise.
- Current paths are set up for each microstrip.
- Mode 1 definition the common mode current uses both conductors, so the total current path uses both paths on lines 1 and 2.
- Mode 2 definition the differential mode current travels down line 1, so a current path is defined. Current returns on line 2, so the path around line 2 is not included.
 - Lines 1 and 2 can be flipped with no change in the computed solution.

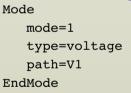

```
#OpenParEMmodes 1.0
File
   name=diffPair.FCStd
EndFile
Path
   name=line1
                             closed
   point=(-0.0015, 0.000635)
  point=(-0.0005,0.000635)
                              path for
   point=(-0.0005, 0.000935)
                             line 1
   point=(-0.0015, 0.000935)
   closed=true
EndPath
Path
   name=line2
                             closed
   point=(0.0005,0.000635)
   point=(0.0015,0.000635)
                             path for
   point=(0.0015,0.000935)
                             line 2
  point=(0.0005,0.000935)
   closed=true
EndPath
Mode
                    mode 1
   mode=1
                    current is on
   type=current
                    both line 1
   path=line1
   path+=line2
                    and line 2
EndMode
                    mode 2 current
Mode
  mode=2
                    is on line 1, with
   type=current
                    return current
```

path=line1

EndMode

on line 2

- mesh.order 5
- refinement.required.passes 3
- refinement.tolerance 0.001
- solution.impedance.definition PI
- solution.impedance.calculation modal
- frequency.plan.point 52e9
- solution.modes 2
- solution.tolerance 1e-12


- Mode 1 $Z_{o.common}$ = 27.63 Ω
- Mode 2 $Z_{o,differential}$ = 96.92 Ω
- Even and odd Z_o
 - $-Z_{oe}=2*Z_{o.common}=2*27.63=55.26 \Omega$
 - $-Z_{oo}=1/2*Z_{o,differential}=96.92/2=48.46 \Omega$

2-mode modal example - Z using voltage

- The boundary/modes file simplified for currents for the example regression/differential pair/diff pair modal is shown to the right.
- This is a coupled microstrip, so there are two modes.
 - common mode The voltages on the lines have the same magnitude and sign.
 - differential mode The voltages on the lines have the same magnitude but opposite signs.
- The voltage paths must be set up to reflect how the modes reference the voltage.
 - "Easy" for 2 conductors. Challenging, otherwise.
- Mode 1 definition the common mode Use one path from one of the conductors to ground.
- Mode 2 definition the differential mode Use a path from line 1 to line 2. Each line uses the other as the ground reference.
 - An integration line directly between the two can be used, but the fields are rapidly varying due to the corners on the conductors.
 - Here, the integration path goes to the centers of the conductors. This relies on the path independence of voltage when the path is small compared to the wavelength. This

```
setup results in faster convergence.
                              path V2
        path V
```

```
#OpenParEMmodes 1.0
File
   name=diffPair.FCStd
EndFile
Path
   name=V1
  point=(-0.001,0.000635)
                              path V1
   point=(-0.001,0.0)
   closed=false
EndPath
Path
   name=V2
   point=(0.001,0.000635)
                              path V2
   point=(0.001,0.0)
   closed=false
EndPath
                    mode 1
Mode
  mode=1
                    voltage goes
   type=voltage
                    from line 1 to
```


Mode

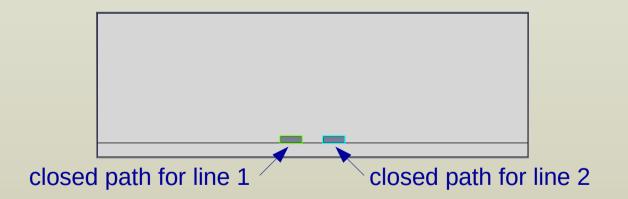
EndMode

mode=2type=voltage path=V1 path-=V2

around

mode 2 voltage goes from line 1 to line 2

- mesh.order 5
- refinement.required.passes 3
- refinement.tolerance 0.001
- solution.impedance.definition PV
- solution.impedance.calculation modal
- frequency.plan.point 52e9
- solution.modes 2
- solution.tolerance 1e-12


- Mode 1 $Z_{o,common}$ = 29.43 Ω
- Mode 2 $Z_{o,differential}$ = 134.54 Ω
- Even and odd Z₀
 - $-Z_{oe} = 2*Z_{o,common} = 2*29.43 = 58.86 \Omega$
 - $-Z_{oo}=1/2*Z_{o,differential}=134.54/2=67.27$ Ω
- Note that as expected, the impedance values are different between the PI and PV definitions. For microstrip and stripline transmission lines, the PI definition is generally preferred.

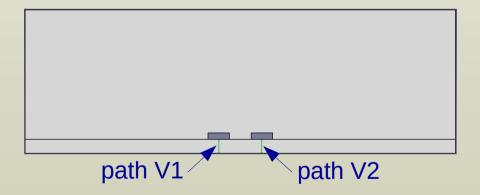
Multi-Mode Setup: Lines

- The lines setup defines voltages and currents based on the lines rather than on the modes.
- Since the setup does not follow the modes, an impedance matrix for the line impedances is produced.
- Note that OpenParEM2D is still solving for the modes. The basic EM solution is the same whether the impedance setup uses modal or lines definitions.
- The lines setup is far simpler than the modal setup since no understanding of the field structure or referencing is required.
- Setup
 - For currents, each line gets a closed loop around the conductor.
 - For voltages, each line gets a path from the conductor to ground.
- The line calculation is called for by the following line in the setup file:
 - solution.impedance.calculation line

2-mode line example - Z using current

- The boundary/modes file simplified for currents for the example regression/differential_pair/diff_pair_line is shown to the right.
- This is a coupled microstrip, so there are two lines.
 - Each line gets a closed path around the conductor.
 - The Mode/EndMode block still uses the "mode=" keyword, but now the mode number is really referring to the line number. [This should probably be changed in the spec.]
- All of the lines are treated the same.


```
#OpenParEMmodes 1.0
File
   name=diffPair.FCStd
EndFile
Path
   name=line1
                              closed
   point=(-0.0015,0.000635)
   point=(-0.0005, 0.000635)
                              path for
   point=(-0.0005, 0.000935)
                              line 1
   point=(-0.0015, 0.000935)
   closed=true
EndPath
Path
   name=line2
                              closed
   point=(0.0005,0.000635)
   point=(0.0015,0.000635)
                              path for
   point=(0.0015,0.000935)
                              line 2
   point=(0.0005,0.000935)
   closed=true
EndPath
Mode
                    mode 1 refers
   mode=1
                    to line 1
   type=current
   path=line1
EndMode
Mode
                    mode 2 refers
   mode=2
   type=current
                    to line 2
   path=line2
EndMode
```


-	mesh.order	5
_	refinement.required.passes	3
_	refinement.tolerance	0.001
_	solution.impedance.definition	PI
-	solution.impedance.calculation	line
-	frequency.plan.point	52e9
_	solution.modes	2
_	solution.tolerance	1e-12

$$Z = \begin{bmatrix} 55.25 & 0.00092 \\ 0.00092 & 48.46 \end{bmatrix}$$

- Diagonals are Z_{oe} and Z_{oo}
- Compare to the prior modal results
 - $Z_{oe} = 55.26 \Omega$
 - $Z_{00} = 48.46 \Omega$
- Same answer

2-mode lines example - Z_o using voltage

- The boundary/modes file simplified for currents for the example regression/differential pair/diff pair line is shown to the right.
- This is a coupled microstrip, so there are two lines.
 - Each line gets a closed path around the conductor.
 - The Mode/EndMode block still uses the "mode=" keyword, but now the mode number is really referring to the line number. [This should probably be changed in the spec.]
- All of the lines are treated the same.


```
#OpenParEMmodes 1.0
File
   name=diffPair.FCStd
EndFile
Path
   name=V1
  point=(-0.001,0.000635)
                             path V1
   point=(-0.001,0.0)
   closed=false
EndPath
Path
   name=V2
   point=(0.001,0.000635)
                             path V2
   point=(0.001,0.0)
   closed=false
EndPath
                   mode 1 voltage
Mode
  mode=1
                   goes from line 1
   type=voltage
                   to ground
  path=V1
EndMode
Mode
                   mode 2 voltage
  mode=2
  type=voltage
                   goes from line 1
  path=V2
                   to ground
EndMode
```

-	mesh.order	5
-	refinement.required.passes	3
-	refinement.tolerance	0.001
_	solution.impedance.definition	PV
-	solution.impedance.calculation	line
-	frequency.plan.point	52e9
-	solution.modes	2
_	solution.tolerance	1e-12

$$Z = \begin{bmatrix} 58.84 & 0.0014 \\ 0.0014 & 67.23 \end{bmatrix}$$

- Diagonals are Z_{oe} and Z_{oo}
- Compare to the prior modal results
 - $Z_{oe} = 58.86 \Omega$
 - $Z_{00} = 67.27 \Omega$
- Same answer